基于乘法季节性模型的居民储蓄预测与分析

Ruicheng Yang, Mao-xiu Pang, X. Yang
{"title":"基于乘法季节性模型的居民储蓄预测与分析","authors":"Ruicheng Yang, Mao-xiu Pang, X. Yang","doi":"10.1109/ICSESS.2012.6269544","DOIUrl":null,"url":null,"abstract":"Household savings represent the purchasing power of the remaining of the disposable income after getting ride of consumption. For predicting on household savings is extremely important. The existing prediction model of household savings usually use traditional methods--regression prediction method. However, the paper uses the method of multiplicative seasonality model of time series to analysis and predicts the rest of household saving, and derives that the ideal prediction model of ARIMA(2,1,1)(1,1,1,).","PeriodicalId":205738,"journal":{"name":"2012 IEEE International Conference on Computer Science and Automation Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction and analysis of the household savings based on the multiplicative seasonality model\",\"authors\":\"Ruicheng Yang, Mao-xiu Pang, X. Yang\",\"doi\":\"10.1109/ICSESS.2012.6269544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Household savings represent the purchasing power of the remaining of the disposable income after getting ride of consumption. For predicting on household savings is extremely important. The existing prediction model of household savings usually use traditional methods--regression prediction method. However, the paper uses the method of multiplicative seasonality model of time series to analysis and predicts the rest of household saving, and derives that the ideal prediction model of ARIMA(2,1,1)(1,1,1,).\",\"PeriodicalId\":205738,\"journal\":{\"name\":\"2012 IEEE International Conference on Computer Science and Automation Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Computer Science and Automation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS.2012.6269544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2012.6269544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

家庭储蓄代表的是消费后可支配收入剩余部分的购买力。因为预测家庭储蓄是极其重要的。现有的居民储蓄预测模型通常采用传统的方法——回归预测法。然而,本文采用时间序列的乘法季节性模型的方法对居民储蓄的其余部分进行分析和预测,并推导出ARIMA(2,1,1)(1,1,1,)的理想预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction and analysis of the household savings based on the multiplicative seasonality model
Household savings represent the purchasing power of the remaining of the disposable income after getting ride of consumption. For predicting on household savings is extremely important. The existing prediction model of household savings usually use traditional methods--regression prediction method. However, the paper uses the method of multiplicative seasonality model of time series to analysis and predicts the rest of household saving, and derives that the ideal prediction model of ARIMA(2,1,1)(1,1,1,).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信