温度变化对实验性DPA和DEMA攻击的影响

E. Tena-Sánchez, A. Acosta
{"title":"温度变化对实验性DPA和DEMA攻击的影响","authors":"E. Tena-Sánchez, A. Acosta","doi":"10.1109/PATMOS.2018.8463993","DOIUrl":null,"url":null,"abstract":"Side-Channels attacks are usually performed to measure the vulnerability of cryptocircuits against malicious attacks. The conditions in which the attacks are carried out have influence in their effectivity. In this sense, temperature variations should be considered to assess the complete vulnerability of a system, but they have not been deeply considered in the literature. For this purpose, experimental DPA and DEMA attacks are carried out over one of the widest used and studied block cipher, namely AES algorithm, implemented in a Spartan-6 FPGA. The effectivity of DPA and DEMA attacks under different temperatures: 10, 25, 50 and 70°C have been studied experimentally. The attacks have been made over the 128 bits of two randomly chosen keys. The security achieved for each attack is measured using the Measurements to Disclose (MTD) the key, which determines the minimum number of patterns needed to retrieve the secret key. From the results we can obtain interesting conclusions: DPA attack is more effective than the DEMA attack over the AES implementation on FPGA. On the other hand, we conclude that the key has influence on the MTD value, but the variability between keys is of the same magnitude as the variability between temperatures, meaning that temperature variation is not a decisive factor in the effectiveness of an attack.","PeriodicalId":234100,"journal":{"name":"2018 28th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Temperature Variation in Experimental DPA and DEMA Attacks\",\"authors\":\"E. Tena-Sánchez, A. Acosta\",\"doi\":\"10.1109/PATMOS.2018.8463993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Side-Channels attacks are usually performed to measure the vulnerability of cryptocircuits against malicious attacks. The conditions in which the attacks are carried out have influence in their effectivity. In this sense, temperature variations should be considered to assess the complete vulnerability of a system, but they have not been deeply considered in the literature. For this purpose, experimental DPA and DEMA attacks are carried out over one of the widest used and studied block cipher, namely AES algorithm, implemented in a Spartan-6 FPGA. The effectivity of DPA and DEMA attacks under different temperatures: 10, 25, 50 and 70°C have been studied experimentally. The attacks have been made over the 128 bits of two randomly chosen keys. The security achieved for each attack is measured using the Measurements to Disclose (MTD) the key, which determines the minimum number of patterns needed to retrieve the secret key. From the results we can obtain interesting conclusions: DPA attack is more effective than the DEMA attack over the AES implementation on FPGA. On the other hand, we conclude that the key has influence on the MTD value, but the variability between keys is of the same magnitude as the variability between temperatures, meaning that temperature variation is not a decisive factor in the effectiveness of an attack.\",\"PeriodicalId\":234100,\"journal\":{\"name\":\"2018 28th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 28th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PATMOS.2018.8463993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 28th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PATMOS.2018.8463993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

侧信道攻击通常用来衡量加密电路对恶意攻击的脆弱性。进行攻击的条件对其有效性有影响。从这个意义上说,应该考虑温度变化来评估系统的完整脆弱性,但它们在文献中尚未被深入考虑。为此,在Spartan-6 FPGA中实现了使用最广泛和研究最广泛的分组密码AES算法,并对DPA和DEMA攻击进行了实验。实验研究了DPA和DEMA在不同温度(10、25、50和70℃)下的攻击效果。这些攻击是针对两个随机选择的密钥的128位进行的。每次攻击所达到的安全性都是使用密钥披露度量(MTD)来度量的,该度量确定检索密钥所需的最小模式数量。从结果中我们可以得出有趣的结论:DPA攻击比FPGA上AES实现的DEMA攻击更有效。另一方面,我们得出结论,密钥对MTD值有影响,但密钥之间的变化幅度与温度之间的变化幅度相同,这意味着温度变化不是攻击有效性的决定性因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Temperature Variation in Experimental DPA and DEMA Attacks
Side-Channels attacks are usually performed to measure the vulnerability of cryptocircuits against malicious attacks. The conditions in which the attacks are carried out have influence in their effectivity. In this sense, temperature variations should be considered to assess the complete vulnerability of a system, but they have not been deeply considered in the literature. For this purpose, experimental DPA and DEMA attacks are carried out over one of the widest used and studied block cipher, namely AES algorithm, implemented in a Spartan-6 FPGA. The effectivity of DPA and DEMA attacks under different temperatures: 10, 25, 50 and 70°C have been studied experimentally. The attacks have been made over the 128 bits of two randomly chosen keys. The security achieved for each attack is measured using the Measurements to Disclose (MTD) the key, which determines the minimum number of patterns needed to retrieve the secret key. From the results we can obtain interesting conclusions: DPA attack is more effective than the DEMA attack over the AES implementation on FPGA. On the other hand, we conclude that the key has influence on the MTD value, but the variability between keys is of the same magnitude as the variability between temperatures, meaning that temperature variation is not a decisive factor in the effectiveness of an attack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信