Xin Liu, Chi Ren, Yichen Lu, Ryoma Hattori, Yuhan Shi, Ruoyu Zhao, David Ding, T. Komiyama, D. Kuzum
{"title":"使用透明石墨烯微电极解码细胞钙响应的ECoG高伽马功率","authors":"Xin Liu, Chi Ren, Yichen Lu, Ryoma Hattori, Yuhan Shi, Ruoyu Zhao, David Ding, T. Komiyama, D. Kuzum","doi":"10.1109/NER.2019.8717147","DOIUrl":null,"url":null,"abstract":"The ECoG has been widely used in human brain research, while 2-photon microscopy has been broadly applied to basic neuroscience studies using animal models. Bridging the gap between the 2-photon microscopy and the ECoG is critical for transferring the vast amount of neuroscience knowledge obtained from animal models to human brain studies. Here we develop an LSTM recurrent neural network model to decode the ECoG high gamma power from the cellular calcium activities obtained by multimodal ECoG recordings and 2-photon calcium imaging enabled by transparent graphene microelectrode arrays. In both awake and anesthetized states, our model can successfully decode the stimulus-induced ECoG high gamma power increases and its spontaneous fluctuations in the absence of stimulus.","PeriodicalId":356177,"journal":{"name":"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Decoding ECoG High Gamma Power from Cellular Calcium Response using Transparent Graphene Microelectrodes\",\"authors\":\"Xin Liu, Chi Ren, Yichen Lu, Ryoma Hattori, Yuhan Shi, Ruoyu Zhao, David Ding, T. Komiyama, D. Kuzum\",\"doi\":\"10.1109/NER.2019.8717147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ECoG has been widely used in human brain research, while 2-photon microscopy has been broadly applied to basic neuroscience studies using animal models. Bridging the gap between the 2-photon microscopy and the ECoG is critical for transferring the vast amount of neuroscience knowledge obtained from animal models to human brain studies. Here we develop an LSTM recurrent neural network model to decode the ECoG high gamma power from the cellular calcium activities obtained by multimodal ECoG recordings and 2-photon calcium imaging enabled by transparent graphene microelectrode arrays. In both awake and anesthetized states, our model can successfully decode the stimulus-induced ECoG high gamma power increases and its spontaneous fluctuations in the absence of stimulus.\",\"PeriodicalId\":356177,\"journal\":{\"name\":\"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2019.8717147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2019.8717147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decoding ECoG High Gamma Power from Cellular Calcium Response using Transparent Graphene Microelectrodes
The ECoG has been widely used in human brain research, while 2-photon microscopy has been broadly applied to basic neuroscience studies using animal models. Bridging the gap between the 2-photon microscopy and the ECoG is critical for transferring the vast amount of neuroscience knowledge obtained from animal models to human brain studies. Here we develop an LSTM recurrent neural network model to decode the ECoG high gamma power from the cellular calcium activities obtained by multimodal ECoG recordings and 2-photon calcium imaging enabled by transparent graphene microelectrode arrays. In both awake and anesthetized states, our model can successfully decode the stimulus-induced ECoG high gamma power increases and its spontaneous fluctuations in the absence of stimulus.