现代公钥密码体制中的数学难题

Q. Saeed, T. Basir, S. Ul Haq, N. Zia, M. A. Paracha
{"title":"现代公钥密码体制中的数学难题","authors":"Q. Saeed, T. Basir, S. Ul Haq, N. Zia, M. A. Paracha","doi":"10.1109/ICET.2006.335986","DOIUrl":null,"url":null,"abstract":"In secure network communication public-key algorithms are designed to resist chosen-plaintext attacks; their security is based both on the difficulty of deducing the secret key from the public key and difficulty of deducing the plaintext from the ciphertext. In this paper the two general types of hard problems - number factoring and discrete logarithms are explained. These apply to cryptosystems such as RSA, ElGamal, elliptic curve, Diffie-Hellman key exchange, and they are used in digital signature algorithms","PeriodicalId":238541,"journal":{"name":"2006 International Conference on Emerging Technologies","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Mathematical Hard Problems in Modern Public-Key Cryptosystem\",\"authors\":\"Q. Saeed, T. Basir, S. Ul Haq, N. Zia, M. A. Paracha\",\"doi\":\"10.1109/ICET.2006.335986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In secure network communication public-key algorithms are designed to resist chosen-plaintext attacks; their security is based both on the difficulty of deducing the secret key from the public key and difficulty of deducing the plaintext from the ciphertext. In this paper the two general types of hard problems - number factoring and discrete logarithms are explained. These apply to cryptosystems such as RSA, ElGamal, elliptic curve, Diffie-Hellman key exchange, and they are used in digital signature algorithms\",\"PeriodicalId\":238541,\"journal\":{\"name\":\"2006 International Conference on Emerging Technologies\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICET.2006.335986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2006.335986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在安全网络通信中,公钥算法被设计用来抵抗选择明文攻击;它们的安全性是基于从公钥中推导出密钥的难度和从密文中推导出明文的难度。本文解释了两类一般的难题——数因子分解和离散对数。它们适用于RSA、ElGamal、椭圆曲线、Diffie-Hellman密钥交换等密码系统,并用于数字签名算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Hard Problems in Modern Public-Key Cryptosystem
In secure network communication public-key algorithms are designed to resist chosen-plaintext attacks; their security is based both on the difficulty of deducing the secret key from the public key and difficulty of deducing the plaintext from the ciphertext. In this paper the two general types of hard problems - number factoring and discrete logarithms are explained. These apply to cryptosystems such as RSA, ElGamal, elliptic curve, Diffie-Hellman key exchange, and they are used in digital signature algorithms
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信