采用分段误差函数和自适应学习率的非饱和MLP神经网络训练算法

P. Moallem, S. A. Ayoughi
{"title":"采用分段误差函数和自适应学习率的非饱和MLP神经网络训练算法","authors":"P. Moallem, S. A. Ayoughi","doi":"10.1109/ISTEL.2008.4651271","DOIUrl":null,"url":null,"abstract":"Saturation conditions of the hidden layer neurons are a major cause of learning retardation in multilayer perceptrons (MLP). Under such conditions the traditional backpropagation (BP) algorithm is trapped in local minima. To renew the search for a global minimum, we need to detect the traps and an offset scheme to avoid them. We have discovered that the gradient norm drops to a very low value in local minima. Here, adding a modifying term to the standard error function enables the algorithm to escape the local minima. In this paper, we proposed a piecewise error function; i.e. where the gradient norm remained higher than a parameter we used the standard error function, and added a modifying term to the function below this value. To further enhance this algorithm, we used our proposed adaptive learning rate schema. We performed a selection of benchmark problems to asses the efficiency of our proposed algorithm. Compared to previously proposed algorithms, we recorded higher convergence rates, especially in complex problems with complex input-output mapping.","PeriodicalId":133602,"journal":{"name":"2008 International Symposium on Telecommunications","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Unsaturated MLP neural networks training algorithm using a piecewise error function and adaptive learning rates\",\"authors\":\"P. Moallem, S. A. Ayoughi\",\"doi\":\"10.1109/ISTEL.2008.4651271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Saturation conditions of the hidden layer neurons are a major cause of learning retardation in multilayer perceptrons (MLP). Under such conditions the traditional backpropagation (BP) algorithm is trapped in local minima. To renew the search for a global minimum, we need to detect the traps and an offset scheme to avoid them. We have discovered that the gradient norm drops to a very low value in local minima. Here, adding a modifying term to the standard error function enables the algorithm to escape the local minima. In this paper, we proposed a piecewise error function; i.e. where the gradient norm remained higher than a parameter we used the standard error function, and added a modifying term to the function below this value. To further enhance this algorithm, we used our proposed adaptive learning rate schema. We performed a selection of benchmark problems to asses the efficiency of our proposed algorithm. Compared to previously proposed algorithms, we recorded higher convergence rates, especially in complex problems with complex input-output mapping.\",\"PeriodicalId\":133602,\"journal\":{\"name\":\"2008 International Symposium on Telecommunications\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTEL.2008.4651271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTEL.2008.4651271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

隐藏层神经元的饱和状态是多层感知器(MLP)学习滞后的主要原因。在这种情况下,传统的反向传播(BP)算法陷入局部极小值。为了重新搜索全局最小值,我们需要检测陷阱和一个抵消方案来避免它们。我们发现梯度范数在局部极小值处下降到一个非常低的值。在这里,向标准误差函数中添加修改项使算法能够避免局部最小值。在本文中,我们提出了一个分段误差函数;也就是说,当梯度范数仍然高于某个参数时,我们使用标准误差函数,并在该值以下的函数中添加一个修改项。为了进一步增强该算法,我们使用了我们提出的自适应学习率模式。我们选择了一些基准问题来评估我们提出的算法的效率。与之前提出的算法相比,我们记录了更高的收敛率,特别是在具有复杂输入输出映射的复杂问题中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsaturated MLP neural networks training algorithm using a piecewise error function and adaptive learning rates
Saturation conditions of the hidden layer neurons are a major cause of learning retardation in multilayer perceptrons (MLP). Under such conditions the traditional backpropagation (BP) algorithm is trapped in local minima. To renew the search for a global minimum, we need to detect the traps and an offset scheme to avoid them. We have discovered that the gradient norm drops to a very low value in local minima. Here, adding a modifying term to the standard error function enables the algorithm to escape the local minima. In this paper, we proposed a piecewise error function; i.e. where the gradient norm remained higher than a parameter we used the standard error function, and added a modifying term to the function below this value. To further enhance this algorithm, we used our proposed adaptive learning rate schema. We performed a selection of benchmark problems to asses the efficiency of our proposed algorithm. Compared to previously proposed algorithms, we recorded higher convergence rates, especially in complex problems with complex input-output mapping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信