基于虚拟传感器的飞行器偏航率估计

M. T. Emirler, K. Kahraman, M. Sentürk, B. A. Güvenç, L. Guvenç, B. Efendioglu
{"title":"基于虚拟传感器的飞行器偏航率估计","authors":"M. T. Emirler, K. Kahraman, M. Sentürk, B. A. Güvenç, L. Guvenç, B. Efendioglu","doi":"10.1155/2013/582691","DOIUrl":null,"url":null,"abstract":"Road vehicle yaw stability control systems like electronic stability program (ESP) are important active safety systems used for maintaining lateral stability of the vehicle. Vehicle yaw rate is the key parameter that needs to be known by a yaw stability control system. In this paper, yaw rate is estimated using a virtual sensor which contains kinematic relations and a velocity-scheduled Kalman filter. Kinematic estimation is carried out using wheel speeds, dynamic tire radius, and front wheel steering angle. In addition, a velocity-scheduled Kalman filter utilizing the linearized single-track model of the road vehicle is used in the dynamic estimation part of the virtual sensor. The designed virtual sensor is successfully tested offline using a validated, high degrees of freedom, and high fidelity vehicle model and using hardware-in-the-loop simulations. Moreover, actual road testing is carried out and the estimated yaw rate from the virtual sensor is compared with the actual yaw rate obtained from the commercial yaw rate sensor to demonstrate the effectiveness of the virtual yaw rate sensor in practical use.","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Vehicle Yaw Rate Estimation Using a Virtual Sensor\",\"authors\":\"M. T. Emirler, K. Kahraman, M. Sentürk, B. A. Güvenç, L. Guvenç, B. Efendioglu\",\"doi\":\"10.1155/2013/582691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Road vehicle yaw stability control systems like electronic stability program (ESP) are important active safety systems used for maintaining lateral stability of the vehicle. Vehicle yaw rate is the key parameter that needs to be known by a yaw stability control system. In this paper, yaw rate is estimated using a virtual sensor which contains kinematic relations and a velocity-scheduled Kalman filter. Kinematic estimation is carried out using wheel speeds, dynamic tire radius, and front wheel steering angle. In addition, a velocity-scheduled Kalman filter utilizing the linearized single-track model of the road vehicle is used in the dynamic estimation part of the virtual sensor. The designed virtual sensor is successfully tested offline using a validated, high degrees of freedom, and high fidelity vehicle model and using hardware-in-the-loop simulations. Moreover, actual road testing is carried out and the estimated yaw rate from the virtual sensor is compared with the actual yaw rate obtained from the commercial yaw rate sensor to demonstrate the effectiveness of the virtual yaw rate sensor in practical use.\",\"PeriodicalId\":269774,\"journal\":{\"name\":\"International Journal of Vehicular Technology\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/582691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/582691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

电子稳定程序(ESP)等道路车辆偏航稳定控制系统是维持车辆横向稳定的重要主动安全系统。飞行器的横摆角速度是横摆稳定控制系统需要知道的关键参数。本文使用包含运动关系和速度调度卡尔曼滤波器的虚拟传感器来估计偏航率。利用车轮速度、动态轮胎半径和前轮转向角进行运动学估计。此外,在虚拟传感器的动态估计部分,利用道路车辆的线性化单轨道模型,采用速度调度卡尔曼滤波器。所设计的虚拟传感器使用经过验证的高自由度、高保真度车辆模型和硬件在环仿真成功地进行了离线测试。并进行了实际道路测试,将虚拟传感器估算的横摆角速度与商用横摆角速度传感器获得的实际横摆角速度进行了比较,验证了虚拟横摆角速度传感器在实际使用中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle Yaw Rate Estimation Using a Virtual Sensor
Road vehicle yaw stability control systems like electronic stability program (ESP) are important active safety systems used for maintaining lateral stability of the vehicle. Vehicle yaw rate is the key parameter that needs to be known by a yaw stability control system. In this paper, yaw rate is estimated using a virtual sensor which contains kinematic relations and a velocity-scheduled Kalman filter. Kinematic estimation is carried out using wheel speeds, dynamic tire radius, and front wheel steering angle. In addition, a velocity-scheduled Kalman filter utilizing the linearized single-track model of the road vehicle is used in the dynamic estimation part of the virtual sensor. The designed virtual sensor is successfully tested offline using a validated, high degrees of freedom, and high fidelity vehicle model and using hardware-in-the-loop simulations. Moreover, actual road testing is carried out and the estimated yaw rate from the virtual sensor is compared with the actual yaw rate obtained from the commercial yaw rate sensor to demonstrate the effectiveness of the virtual yaw rate sensor in practical use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信