{"title":"CAD集成MEMS设计","authors":"T. Mukherjee","doi":"10.1117/12.382270","DOIUrl":null,"url":null,"abstract":"The long term impact of MEMS technology will be in its ability novel sensing and actuation functionality on traditional computing and communication devices enabling the ubiquitous digital computer to interact with the world around it. The design of such integrated system will occur at the system level, driven primarily by the application. Methodologies that ease the integration of the digital domain to the real world using mixed domain technologies are therefore crucial. A hierarchical structured design approach that is compatible with standard IC design is outlined. It starts with schematic capture of a design topology, followed by behavioral simulation, layout generation, parasitic extraction, and final verification. This flow is based on a process-independent design representation of commonly used MEMS building blocks, and process-dependent materials properties, design rules, and parasitic parameters.","PeriodicalId":318748,"journal":{"name":"Design, Test, Integration, and Packaging of MEMS/MOEMS","volume":"284 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"CAD for integrated MEMS design\",\"authors\":\"T. Mukherjee\",\"doi\":\"10.1117/12.382270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The long term impact of MEMS technology will be in its ability novel sensing and actuation functionality on traditional computing and communication devices enabling the ubiquitous digital computer to interact with the world around it. The design of such integrated system will occur at the system level, driven primarily by the application. Methodologies that ease the integration of the digital domain to the real world using mixed domain technologies are therefore crucial. A hierarchical structured design approach that is compatible with standard IC design is outlined. It starts with schematic capture of a design topology, followed by behavioral simulation, layout generation, parasitic extraction, and final verification. This flow is based on a process-independent design representation of commonly used MEMS building blocks, and process-dependent materials properties, design rules, and parasitic parameters.\",\"PeriodicalId\":318748,\"journal\":{\"name\":\"Design, Test, Integration, and Packaging of MEMS/MOEMS\",\"volume\":\"284 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Design, Test, Integration, and Packaging of MEMS/MOEMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.382270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design, Test, Integration, and Packaging of MEMS/MOEMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.382270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The long term impact of MEMS technology will be in its ability novel sensing and actuation functionality on traditional computing and communication devices enabling the ubiquitous digital computer to interact with the world around it. The design of such integrated system will occur at the system level, driven primarily by the application. Methodologies that ease the integration of the digital domain to the real world using mixed domain technologies are therefore crucial. A hierarchical structured design approach that is compatible with standard IC design is outlined. It starts with schematic capture of a design topology, followed by behavioral simulation, layout generation, parasitic extraction, and final verification. This flow is based on a process-independent design representation of commonly used MEMS building blocks, and process-dependent materials properties, design rules, and parasitic parameters.