一个统计特征集的监督分类方法的比较:应用:Amazigh OCR

N. Aharrane, K. El Moutaouakil, K. Satori
{"title":"一个统计特征集的监督分类方法的比较:应用:Amazigh OCR","authors":"N. Aharrane, K. El Moutaouakil, K. Satori","doi":"10.1109/ISACV.2015.7106171","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the study of supervised learning methods as part of pattern recognition and especially the Amazigh Characters Recognition. The goal is to compare a partial list of the popular automatic classification methods, and test the performance of the proposed features set extracted from isolated characters using statistical methods with these different classifiers. In Experimental evaluation, several runs have been conducted for the different algorithms and the best accuracy observed is for the multilayer perceptron with a recognition rate about 96,47% which is very satisfactory.","PeriodicalId":426557,"journal":{"name":"2015 Intelligent Systems and Computer Vision (ISCV)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A comparison of supervised classification methods for a statistical set of features: Application: Amazigh OCR\",\"authors\":\"N. Aharrane, K. El Moutaouakil, K. Satori\",\"doi\":\"10.1109/ISACV.2015.7106171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to the study of supervised learning methods as part of pattern recognition and especially the Amazigh Characters Recognition. The goal is to compare a partial list of the popular automatic classification methods, and test the performance of the proposed features set extracted from isolated characters using statistical methods with these different classifiers. In Experimental evaluation, several runs have been conducted for the different algorithms and the best accuracy observed is for the multilayer perceptron with a recognition rate about 96,47% which is very satisfactory.\",\"PeriodicalId\":426557,\"journal\":{\"name\":\"2015 Intelligent Systems and Computer Vision (ISCV)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Intelligent Systems and Computer Vision (ISCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISACV.2015.7106171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACV.2015.7106171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文对模式识别中的监督学习方法进行了研究,特别是对Amazigh字符识别进行了研究。目标是比较流行的自动分类方法的部分列表,并使用这些不同的分类器使用统计方法从孤立字符中提取所提出的特征集的性能。在实验评估中,对不同算法进行了多次运行,发现多层感知器的准确率最高,识别率约为96.47%,非常令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of supervised classification methods for a statistical set of features: Application: Amazigh OCR
This paper is devoted to the study of supervised learning methods as part of pattern recognition and especially the Amazigh Characters Recognition. The goal is to compare a partial list of the popular automatic classification methods, and test the performance of the proposed features set extracted from isolated characters using statistical methods with these different classifiers. In Experimental evaluation, several runs have been conducted for the different algorithms and the best accuracy observed is for the multilayer perceptron with a recognition rate about 96,47% which is very satisfactory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信