{"title":"粒子群优化-多尺度小波核最小二乘支持向量回归","authors":"Qin Wang, Yuantong Shen","doi":"10.1109/ISCID.2013.49","DOIUrl":null,"url":null,"abstract":"A novel regression model combining least squares support vector regression (LS-SVR) with multi-scale wavelet kernel and particle swarm optimization (PSO) was presented in this paper, and applied to the approximation of non-stationary dataset and those continuous functions polluted by strong noise. Support vector kernel function with the multi-resolution characteristics was employed, such that LS-SVR with multi-scale wavelet kernel can estimate each details of target function accurately. The experimental results show that the proposed method is effective and feasible.","PeriodicalId":297027,"journal":{"name":"2013 Sixth International Symposium on Computational Intelligence and Design","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle Swarm Optimization-Least Squares Support Vector Regression with Multi-scale Wavelet Kernel\",\"authors\":\"Qin Wang, Yuantong Shen\",\"doi\":\"10.1109/ISCID.2013.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel regression model combining least squares support vector regression (LS-SVR) with multi-scale wavelet kernel and particle swarm optimization (PSO) was presented in this paper, and applied to the approximation of non-stationary dataset and those continuous functions polluted by strong noise. Support vector kernel function with the multi-resolution characteristics was employed, such that LS-SVR with multi-scale wavelet kernel can estimate each details of target function accurately. The experimental results show that the proposed method is effective and feasible.\",\"PeriodicalId\":297027,\"journal\":{\"name\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2013.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Sixth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2013.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Particle Swarm Optimization-Least Squares Support Vector Regression with Multi-scale Wavelet Kernel
A novel regression model combining least squares support vector regression (LS-SVR) with multi-scale wavelet kernel and particle swarm optimization (PSO) was presented in this paper, and applied to the approximation of non-stationary dataset and those continuous functions polluted by strong noise. Support vector kernel function with the multi-resolution characteristics was employed, such that LS-SVR with multi-scale wavelet kernel can estimate each details of target function accurately. The experimental results show that the proposed method is effective and feasible.