基于深度学习模型的社交媒体文本精神病人格特征检测与分类

Junaid Asghar, Saima Akbar, M. Asghar, B. Ahmad, Mabrook S. Al-Rakhami, A. Gumaei
{"title":"基于深度学习模型的社交媒体文本精神病人格特征检测与分类","authors":"Junaid Asghar, Saima Akbar, M. Asghar, B. Ahmad, Mabrook S. Al-Rakhami, A. Gumaei","doi":"10.1155/2021/5512241","DOIUrl":null,"url":null,"abstract":"Nowadays, there is a digital era, where social media sites like Facebook, Google, Twitter, and YouTube are used by the majority of people, generating a lot of textual content. The user-generated textual content discloses important information about people’s personalities, identifying a special type of people known as psychopaths. The aim of this work is to classify the input text into psychopath and nonpsychopath traits. Most of the existing work on psychopath’s detection has been performed in the psychology domain using traditional approaches, like SRPIII technique with limited dataset size. Therefore, it motivates us to build an advanced computational model for psychopath’s detection in the text analytics domain. In this work, we investigate an advanced deep learning technique, namely, attention-based BILSTM for psychopath’s detection with an increased dataset size for efficient classification of the input text into psychopath vs. nonpsychopath classes.","PeriodicalId":182719,"journal":{"name":"Comput. Math. Methods Medicine","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Detection and Classification of Psychopathic Personality Trait from Social Media Text Using Deep Learning Model\",\"authors\":\"Junaid Asghar, Saima Akbar, M. Asghar, B. Ahmad, Mabrook S. Al-Rakhami, A. Gumaei\",\"doi\":\"10.1155/2021/5512241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, there is a digital era, where social media sites like Facebook, Google, Twitter, and YouTube are used by the majority of people, generating a lot of textual content. The user-generated textual content discloses important information about people’s personalities, identifying a special type of people known as psychopaths. The aim of this work is to classify the input text into psychopath and nonpsychopath traits. Most of the existing work on psychopath’s detection has been performed in the psychology domain using traditional approaches, like SRPIII technique with limited dataset size. Therefore, it motivates us to build an advanced computational model for psychopath’s detection in the text analytics domain. In this work, we investigate an advanced deep learning technique, namely, attention-based BILSTM for psychopath’s detection with an increased dataset size for efficient classification of the input text into psychopath vs. nonpsychopath classes.\",\"PeriodicalId\":182719,\"journal\":{\"name\":\"Comput. Math. Methods Medicine\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Math. Methods Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/5512241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Methods Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/5512241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

如今是一个数字时代,大多数人使用Facebook、Google、Twitter和YouTube等社交媒体网站,产生了大量的文本内容。用户生成的文本内容揭示了人们性格的重要信息,确定了一种特殊类型的人,即精神病患者。这项工作的目的是将输入文本分类为精神病和非精神病特征。大多数现有的精神病患者检测工作都是在心理学领域使用传统的方法进行的,如有限数据集大小的SRPIII技术。因此,这促使我们在文本分析领域建立一种先进的精神病患检测计算模型。在这项工作中,我们研究了一种先进的深度学习技术,即基于注意力的BILSTM,用于精神病患者的检测,并增加了数据集大小,以便将输入文本有效地分类为精神病患者和非精神病患者类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection and Classification of Psychopathic Personality Trait from Social Media Text Using Deep Learning Model
Nowadays, there is a digital era, where social media sites like Facebook, Google, Twitter, and YouTube are used by the majority of people, generating a lot of textual content. The user-generated textual content discloses important information about people’s personalities, identifying a special type of people known as psychopaths. The aim of this work is to classify the input text into psychopath and nonpsychopath traits. Most of the existing work on psychopath’s detection has been performed in the psychology domain using traditional approaches, like SRPIII technique with limited dataset size. Therefore, it motivates us to build an advanced computational model for psychopath’s detection in the text analytics domain. In this work, we investigate an advanced deep learning technique, namely, attention-based BILSTM for psychopath’s detection with an increased dataset size for efficient classification of the input text into psychopath vs. nonpsychopath classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信