一种自适应多尺度光流估计方法:计算理论与生理实现

C. Koch, H.T. Wang, R. Battiti, B. Mathur, C. Ziomkowski
{"title":"一种自适应多尺度光流估计方法:计算理论与生理实现","authors":"C. Koch, H.T. Wang, R. Battiti, B. Mathur, C. Ziomkowski","doi":"10.1109/WVM.1991.212780","DOIUrl":null,"url":null,"abstract":"The accuracy of optical flow estimation depends on the spatio-temporal discretization used in the computation. The authors propose an adaptive multiscale method, where the discretization scale is chosen locally according to an estimate of the relative error in the velocity measurements. They show that their coarse-to-fine method provides substantially better results of optical flow than conventional algorithms. The authors map this multiscale strategy onto their model of motion computation in primate area MT. The model consists of two stages: (1) local velocities are measured across multiple spatio-temporal channels, while (2) the optical flow field is computed by a network of direction-selective neurons at multiple spatial resolutions. Their model neurons show the same nonclassical receptive field properties as Allman's type I MT neurons and lead to a novel interpretation of some aspect of the motion capture illusion.<<ETX>>","PeriodicalId":208481,"journal":{"name":"Proceedings of the IEEE Workshop on Visual Motion","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"An adaptive multi-scale approach for estimating optical flow: computational theory and physiological implementation\",\"authors\":\"C. Koch, H.T. Wang, R. Battiti, B. Mathur, C. Ziomkowski\",\"doi\":\"10.1109/WVM.1991.212780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accuracy of optical flow estimation depends on the spatio-temporal discretization used in the computation. The authors propose an adaptive multiscale method, where the discretization scale is chosen locally according to an estimate of the relative error in the velocity measurements. They show that their coarse-to-fine method provides substantially better results of optical flow than conventional algorithms. The authors map this multiscale strategy onto their model of motion computation in primate area MT. The model consists of two stages: (1) local velocities are measured across multiple spatio-temporal channels, while (2) the optical flow field is computed by a network of direction-selective neurons at multiple spatial resolutions. Their model neurons show the same nonclassical receptive field properties as Allman's type I MT neurons and lead to a novel interpretation of some aspect of the motion capture illusion.<<ETX>>\",\"PeriodicalId\":208481,\"journal\":{\"name\":\"Proceedings of the IEEE Workshop on Visual Motion\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Workshop on Visual Motion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WVM.1991.212780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Workshop on Visual Motion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WVM.1991.212780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

光流估计的精度取决于计算中使用的时空离散化方法。作者提出了一种自适应多尺度方法,根据速度测量的相对误差估计局部选择离散尺度。他们表明,他们的从粗到精的方法提供了比传统算法更好的光流结果。作者将这种多尺度策略映射到他们的灵长类区域MT运动计算模型中。该模型包括两个阶段:(1)跨多个时空通道测量局部速度,(2)在多个空间分辨率下通过方向选择神经元网络计算光流场。他们的模型神经元显示出与Allman的I型MT神经元相同的非经典感受野特性,并导致对动作捕捉错觉的某些方面的新解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive multi-scale approach for estimating optical flow: computational theory and physiological implementation
The accuracy of optical flow estimation depends on the spatio-temporal discretization used in the computation. The authors propose an adaptive multiscale method, where the discretization scale is chosen locally according to an estimate of the relative error in the velocity measurements. They show that their coarse-to-fine method provides substantially better results of optical flow than conventional algorithms. The authors map this multiscale strategy onto their model of motion computation in primate area MT. The model consists of two stages: (1) local velocities are measured across multiple spatio-temporal channels, while (2) the optical flow field is computed by a network of direction-selective neurons at multiple spatial resolutions. Their model neurons show the same nonclassical receptive field properties as Allman's type I MT neurons and lead to a novel interpretation of some aspect of the motion capture illusion.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信