采石过程中石块的质量控制

D. Arosio, S. Munda, L. Zanzi
{"title":"采石过程中石块的质量控制","authors":"D. Arosio, S. Munda, L. Zanzi","doi":"10.1109/ICGPR.2012.6254975","DOIUrl":null,"url":null,"abstract":"Early detection of fractures and internal defects can help quarry owners in cutting quarrying costs and reducing the amount of waste products. Valuable stones used in construction industry such as marble, porphyry, granite, travertine, are usually extracted from quarries by cutting blocks whose size normally varies between 5 and 15 m3. Transportation of these blocks from quarries, often located at high altitudes in mountainous environments, down to the headquarters of the stone industry where big machines are installed to transform the big size blocks into slabs or small size stones, can be quite expensive. Money could be saved by checking on-site the big size blocks with NDT methods able to detect internal fractures and other defects (voids, clay inclusions, etc.). A detailed map of fracture extension and orientation can be also very profitable in optimizing the production line. For example, the final destination of a block (i.e., production of slabs rather than small size blocks or other) and the orientation of the cutting planes can be more properly assigned. Currently, Ground Penetrating Radar is the most promising method for this type of application. It can be applied on-site, it can generate high resolution 3D reconstructions of fractures and defects, quasi-real-time results are feasible. Thus, it can be a cost-effective tool, worth being introduced into the quarry industry. To evaluate the potential of this technology for the quarry industry we have been testing the method on marble and porphyry blocks from a couple of quarries belonging to the Brescia stone district (North Italy). Results are very encouraging: all type of defects and fractures that might have an impact on the production line can be detected by 3D surveying the block with a 2GHz GPR system. A dual-polarized antenna is a plus that makes acquisitions faster and easier. Data processing must include two-dimensional filtering to cancel the artifacts generated by side reflections and 3D migration to generate accurate reconstructions of the target geometries.","PeriodicalId":443640,"journal":{"name":"2012 14th International Conference on Ground Penetrating Radar (GPR)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Quality control of stone blocks during quarrying activities\",\"authors\":\"D. Arosio, S. Munda, L. Zanzi\",\"doi\":\"10.1109/ICGPR.2012.6254975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early detection of fractures and internal defects can help quarry owners in cutting quarrying costs and reducing the amount of waste products. Valuable stones used in construction industry such as marble, porphyry, granite, travertine, are usually extracted from quarries by cutting blocks whose size normally varies between 5 and 15 m3. Transportation of these blocks from quarries, often located at high altitudes in mountainous environments, down to the headquarters of the stone industry where big machines are installed to transform the big size blocks into slabs or small size stones, can be quite expensive. Money could be saved by checking on-site the big size blocks with NDT methods able to detect internal fractures and other defects (voids, clay inclusions, etc.). A detailed map of fracture extension and orientation can be also very profitable in optimizing the production line. For example, the final destination of a block (i.e., production of slabs rather than small size blocks or other) and the orientation of the cutting planes can be more properly assigned. Currently, Ground Penetrating Radar is the most promising method for this type of application. It can be applied on-site, it can generate high resolution 3D reconstructions of fractures and defects, quasi-real-time results are feasible. Thus, it can be a cost-effective tool, worth being introduced into the quarry industry. To evaluate the potential of this technology for the quarry industry we have been testing the method on marble and porphyry blocks from a couple of quarries belonging to the Brescia stone district (North Italy). Results are very encouraging: all type of defects and fractures that might have an impact on the production line can be detected by 3D surveying the block with a 2GHz GPR system. A dual-polarized antenna is a plus that makes acquisitions faster and easier. Data processing must include two-dimensional filtering to cancel the artifacts generated by side reflections and 3D migration to generate accurate reconstructions of the target geometries.\",\"PeriodicalId\":443640,\"journal\":{\"name\":\"2012 14th International Conference on Ground Penetrating Radar (GPR)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 14th International Conference on Ground Penetrating Radar (GPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICGPR.2012.6254975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 14th International Conference on Ground Penetrating Radar (GPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGPR.2012.6254975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

早期发现裂缝和内部缺陷可以帮助采石场所有者降低采石成本,减少废物的数量。建筑行业中使用的有价值的石头,如大理石、斑岩、花岗岩、石灰华,通常是从采石场通过切割块状提取的,块状大小通常在5至15立方米之间。这些石块通常位于山区的高海拔采石场,从采石场运输到石业总部,在那里安装了大型机器,将大块石块变成石板或小块石头,这可能相当昂贵。采用无损检测方法对大尺寸砌块进行现场检测,能够检测出内部裂缝和其他缺陷(空隙、粘土夹杂物等),从而节省资金。详细的裂缝延伸和定向图对于优化生产线也是非常有益的。例如,块的最终目的地(即,生产板而不是小尺寸块或其他)和切割平面的方向可以更适当地分配。目前,探地雷达是这类应用中最有前途的方法。该方法可在现场应用,可生成高分辨率的断裂和缺陷三维重建,准实时结果是可行的。因此,它可以是一个具有成本效益的工具,值得引入采石场行业。为了评估这项技术在采石场行业的潜力,我们已经在布雷西亚石材区(北意大利)的几个采石场的大理石和斑岩块上测试了该方法。结果非常令人鼓舞:通过使用2GHz GPR系统对区块进行3D测量,可以检测到可能影响生产线的所有类型的缺陷和裂缝。双极化天线是一个加分项,使捕获更快,更容易。数据处理必须包括二维滤波,以消除侧面反射和三维迁移产生的伪影,以生成目标几何形状的精确重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quality control of stone blocks during quarrying activities
Early detection of fractures and internal defects can help quarry owners in cutting quarrying costs and reducing the amount of waste products. Valuable stones used in construction industry such as marble, porphyry, granite, travertine, are usually extracted from quarries by cutting blocks whose size normally varies between 5 and 15 m3. Transportation of these blocks from quarries, often located at high altitudes in mountainous environments, down to the headquarters of the stone industry where big machines are installed to transform the big size blocks into slabs or small size stones, can be quite expensive. Money could be saved by checking on-site the big size blocks with NDT methods able to detect internal fractures and other defects (voids, clay inclusions, etc.). A detailed map of fracture extension and orientation can be also very profitable in optimizing the production line. For example, the final destination of a block (i.e., production of slabs rather than small size blocks or other) and the orientation of the cutting planes can be more properly assigned. Currently, Ground Penetrating Radar is the most promising method for this type of application. It can be applied on-site, it can generate high resolution 3D reconstructions of fractures and defects, quasi-real-time results are feasible. Thus, it can be a cost-effective tool, worth being introduced into the quarry industry. To evaluate the potential of this technology for the quarry industry we have been testing the method on marble and porphyry blocks from a couple of quarries belonging to the Brescia stone district (North Italy). Results are very encouraging: all type of defects and fractures that might have an impact on the production line can be detected by 3D surveying the block with a 2GHz GPR system. A dual-polarized antenna is a plus that makes acquisitions faster and easier. Data processing must include two-dimensional filtering to cancel the artifacts generated by side reflections and 3D migration to generate accurate reconstructions of the target geometries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信