Ashwini Kumar, K. Shin, Young-June Choi, D. Niculescu
{"title":"非授权频谱用户与授权频谱用户的时域共存问题","authors":"Ashwini Kumar, K. Shin, Young-June Choi, D. Niculescu","doi":"10.1109/DYSPAN.2012.6478133","DOIUrl":null,"url":null,"abstract":"This paper aims to exploit spectrum white spaces in time-domain via the Dynamic Spectrum Access (DSA) technology. DSA relies on opportunistic access of licensed spectrum by unlicensed devices. Any “unlicensed-with-licensed” coexistence must ensure “safe” (i.e., un-interfered) communications for the incumbents, while achieving high spectrum-use efficiency for the secondary users. We propose a novel and comprehensive metric called the Coexistence Goodness Factor (CGF) to accurately model the inherent tradeoff between incumbent safety and unlicensed access efficiency for time-domain DSA-based coexistence. To optimize the coexistence performance, we propose a generic, online, dual-mode DSA coexistence protocol. The unlicensed devices attempt to estimate incumbent behavior patterns, and enter the Aggressive Mode (AM) once such a pattern is found, while they stay in the Safe Mode (SM) otherwise. For low-overhead and reliable estimation of incumbent spectrum-usage patterns, we propose algorithms based on Approximate Entropy (ApEn). Further, we design Spectrum-Conscious WiFi (SpeCWiFi), which provisions the proposed DSA coexistence scheme to the base 802.11 MAC. We conduct an extensive experimental evaluation of SpeCWiFi using a MadWifi-based prototype implementation in conjunction with 802.11 wireless cards. The evaluation shows that SpeCWiFi achieves excellent time-domain DSA coexistence in the presence of different types of licensed spectrum, including fast-varying channels that feature short-duration white spaces.","PeriodicalId":224818,"journal":{"name":"2012 IEEE International Symposium on Dynamic Spectrum Access Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On time-domain coexistence of unlicensed and licensed spectrum users\",\"authors\":\"Ashwini Kumar, K. Shin, Young-June Choi, D. Niculescu\",\"doi\":\"10.1109/DYSPAN.2012.6478133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to exploit spectrum white spaces in time-domain via the Dynamic Spectrum Access (DSA) technology. DSA relies on opportunistic access of licensed spectrum by unlicensed devices. Any “unlicensed-with-licensed” coexistence must ensure “safe” (i.e., un-interfered) communications for the incumbents, while achieving high spectrum-use efficiency for the secondary users. We propose a novel and comprehensive metric called the Coexistence Goodness Factor (CGF) to accurately model the inherent tradeoff between incumbent safety and unlicensed access efficiency for time-domain DSA-based coexistence. To optimize the coexistence performance, we propose a generic, online, dual-mode DSA coexistence protocol. The unlicensed devices attempt to estimate incumbent behavior patterns, and enter the Aggressive Mode (AM) once such a pattern is found, while they stay in the Safe Mode (SM) otherwise. For low-overhead and reliable estimation of incumbent spectrum-usage patterns, we propose algorithms based on Approximate Entropy (ApEn). Further, we design Spectrum-Conscious WiFi (SpeCWiFi), which provisions the proposed DSA coexistence scheme to the base 802.11 MAC. We conduct an extensive experimental evaluation of SpeCWiFi using a MadWifi-based prototype implementation in conjunction with 802.11 wireless cards. The evaluation shows that SpeCWiFi achieves excellent time-domain DSA coexistence in the presence of different types of licensed spectrum, including fast-varying channels that feature short-duration white spaces.\",\"PeriodicalId\":224818,\"journal\":{\"name\":\"2012 IEEE International Symposium on Dynamic Spectrum Access Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Symposium on Dynamic Spectrum Access Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DYSPAN.2012.6478133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Dynamic Spectrum Access Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DYSPAN.2012.6478133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On time-domain coexistence of unlicensed and licensed spectrum users
This paper aims to exploit spectrum white spaces in time-domain via the Dynamic Spectrum Access (DSA) technology. DSA relies on opportunistic access of licensed spectrum by unlicensed devices. Any “unlicensed-with-licensed” coexistence must ensure “safe” (i.e., un-interfered) communications for the incumbents, while achieving high spectrum-use efficiency for the secondary users. We propose a novel and comprehensive metric called the Coexistence Goodness Factor (CGF) to accurately model the inherent tradeoff between incumbent safety and unlicensed access efficiency for time-domain DSA-based coexistence. To optimize the coexistence performance, we propose a generic, online, dual-mode DSA coexistence protocol. The unlicensed devices attempt to estimate incumbent behavior patterns, and enter the Aggressive Mode (AM) once such a pattern is found, while they stay in the Safe Mode (SM) otherwise. For low-overhead and reliable estimation of incumbent spectrum-usage patterns, we propose algorithms based on Approximate Entropy (ApEn). Further, we design Spectrum-Conscious WiFi (SpeCWiFi), which provisions the proposed DSA coexistence scheme to the base 802.11 MAC. We conduct an extensive experimental evaluation of SpeCWiFi using a MadWifi-based prototype implementation in conjunction with 802.11 wireless cards. The evaluation shows that SpeCWiFi achieves excellent time-domain DSA coexistence in the presence of different types of licensed spectrum, including fast-varying channels that feature short-duration white spaces.