{"title":"基于元值学习的快速以策略为中心的最优运动规划","authors":"Siyuan Xu, Minghui Zhu","doi":"10.15607/rss.2022.xviii.061","DOIUrl":null,"url":null,"abstract":"—This paper considers policy-centric optimal motion planning with limited reaction time. The motion planning queries are determined by their goal regions and cost functionals, and are generated over time from a distribution. Once a new query is requested, the robot needs to quickly generate a motion planner which can steer the robot to the goal region while minimizing a cost functional. We develop a meta-learning-based algorithm to compute a meta value function, which can be fast adapted using a small number of samples of a new query. Simulations on a unicycle are conducted to evaluate the developed algorithm and show the anytime property of the proposed algorithm.","PeriodicalId":340265,"journal":{"name":"Robotics: Science and Systems XVIII","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Meta Value Learning for Fast Policy-Centric Optimal Motion Planning\",\"authors\":\"Siyuan Xu, Minghui Zhu\",\"doi\":\"10.15607/rss.2022.xviii.061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—This paper considers policy-centric optimal motion planning with limited reaction time. The motion planning queries are determined by their goal regions and cost functionals, and are generated over time from a distribution. Once a new query is requested, the robot needs to quickly generate a motion planner which can steer the robot to the goal region while minimizing a cost functional. We develop a meta-learning-based algorithm to compute a meta value function, which can be fast adapted using a small number of samples of a new query. Simulations on a unicycle are conducted to evaluate the developed algorithm and show the anytime property of the proposed algorithm.\",\"PeriodicalId\":340265,\"journal\":{\"name\":\"Robotics: Science and Systems XVIII\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics: Science and Systems XVIII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15607/rss.2022.xviii.061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics: Science and Systems XVIII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/rss.2022.xviii.061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Meta Value Learning for Fast Policy-Centric Optimal Motion Planning
—This paper considers policy-centric optimal motion planning with limited reaction time. The motion planning queries are determined by their goal regions and cost functionals, and are generated over time from a distribution. Once a new query is requested, the robot needs to quickly generate a motion planner which can steer the robot to the goal region while minimizing a cost functional. We develop a meta-learning-based algorithm to compute a meta value function, which can be fast adapted using a small number of samples of a new query. Simulations on a unicycle are conducted to evaluate the developed algorithm and show the anytime property of the proposed algorithm.