Roghayeh Haghjoo, S. K. Sadrnezhaad, Nahid Hasanzadeh Nemati
{"title":"射频磁控溅射制备多孔钛纳米涂层以改善骨科植入物的生物响应","authors":"Roghayeh Haghjoo, S. K. Sadrnezhaad, Nahid Hasanzadeh Nemati","doi":"10.5812/jcrps.119150","DOIUrl":null,"url":null,"abstract":": The present study applied a TiO2 nanocoating on a titanium foam substrate produced by powder metallurgy through magnetron sputtering. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) were employed to investigate the surface morphologies of the porous specimens and pre- and post-coating phases, respectively. Also, the growth and proliferation of MG-63 cells (osteoblasts) and their attachment and proliferation on the coated porous titanium specimen (relative to the uncoated specimens) were studied using in vitro and methyl thiazol tetrazolium (MTT) cytotoxicity tests. Considering the porous macrostructure of the coated titanium specimen and the nanostructure of the TiO2 coating on the porous surface and macro-pore walls, the coated specimen was found to be effective in the biocompatibility improvement of dental and orthopedic implants.","PeriodicalId":254271,"journal":{"name":"Journal of Clinical Research in Paramedical Sciences","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thin TiO2 Nanocoating of Porous Titanium through Radio Frequency Magnetron Sputtering to Improve the Biological Response of Orthopedic Implants\",\"authors\":\"Roghayeh Haghjoo, S. K. Sadrnezhaad, Nahid Hasanzadeh Nemati\",\"doi\":\"10.5812/jcrps.119150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The present study applied a TiO2 nanocoating on a titanium foam substrate produced by powder metallurgy through magnetron sputtering. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) were employed to investigate the surface morphologies of the porous specimens and pre- and post-coating phases, respectively. Also, the growth and proliferation of MG-63 cells (osteoblasts) and their attachment and proliferation on the coated porous titanium specimen (relative to the uncoated specimens) were studied using in vitro and methyl thiazol tetrazolium (MTT) cytotoxicity tests. Considering the porous macrostructure of the coated titanium specimen and the nanostructure of the TiO2 coating on the porous surface and macro-pore walls, the coated specimen was found to be effective in the biocompatibility improvement of dental and orthopedic implants.\",\"PeriodicalId\":254271,\"journal\":{\"name\":\"Journal of Clinical Research in Paramedical Sciences\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Research in Paramedical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5812/jcrps.119150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Research in Paramedical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5812/jcrps.119150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thin TiO2 Nanocoating of Porous Titanium through Radio Frequency Magnetron Sputtering to Improve the Biological Response of Orthopedic Implants
: The present study applied a TiO2 nanocoating on a titanium foam substrate produced by powder metallurgy through magnetron sputtering. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) were employed to investigate the surface morphologies of the porous specimens and pre- and post-coating phases, respectively. Also, the growth and proliferation of MG-63 cells (osteoblasts) and their attachment and proliferation on the coated porous titanium specimen (relative to the uncoated specimens) were studied using in vitro and methyl thiazol tetrazolium (MTT) cytotoxicity tests. Considering the porous macrostructure of the coated titanium specimen and the nanostructure of the TiO2 coating on the porous surface and macro-pore walls, the coated specimen was found to be effective in the biocompatibility improvement of dental and orthopedic implants.