{"title":"几何故障检测滤波器的鲁棒模型匹配","authors":"P. Seiler, J. Bokor, B. Vanek, G. Balas","doi":"10.3182/20110828-6-IT-1002.03440","DOIUrl":null,"url":null,"abstract":"Geometric fault detection and isolation filters are known for having excellent fault isolation properties. However, they are generally assumed to be sensitive to model uncertainty and noise. This paper proposes a robust model matching method to incorporate model uncertainty into the design of geometric fault detection filters. Several existing methods for robust filter synthesis are described to solve the robust model matching problem. It is then shown that the robust model matching problem has an interesting self-optimality property for multiplicative input uncertainty models. Finally, a simple example is presented to study the effect of parametric uncertainty and unmodeled dynamics on the performance of a geometric filter.","PeriodicalId":225201,"journal":{"name":"Proceedings of the 2011 American Control Conference","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Robust model matching for geometric fault detection filters\",\"authors\":\"P. Seiler, J. Bokor, B. Vanek, G. Balas\",\"doi\":\"10.3182/20110828-6-IT-1002.03440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geometric fault detection and isolation filters are known for having excellent fault isolation properties. However, they are generally assumed to be sensitive to model uncertainty and noise. This paper proposes a robust model matching method to incorporate model uncertainty into the design of geometric fault detection filters. Several existing methods for robust filter synthesis are described to solve the robust model matching problem. It is then shown that the robust model matching problem has an interesting self-optimality property for multiplicative input uncertainty models. Finally, a simple example is presented to study the effect of parametric uncertainty and unmodeled dynamics on the performance of a geometric filter.\",\"PeriodicalId\":225201,\"journal\":{\"name\":\"Proceedings of the 2011 American Control Conference\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2011 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3182/20110828-6-IT-1002.03440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3182/20110828-6-IT-1002.03440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust model matching for geometric fault detection filters
Geometric fault detection and isolation filters are known for having excellent fault isolation properties. However, they are generally assumed to be sensitive to model uncertainty and noise. This paper proposes a robust model matching method to incorporate model uncertainty into the design of geometric fault detection filters. Several existing methods for robust filter synthesis are described to solve the robust model matching problem. It is then shown that the robust model matching problem has an interesting self-optimality property for multiplicative input uncertainty models. Finally, a simple example is presented to study the effect of parametric uncertainty and unmodeled dynamics on the performance of a geometric filter.