{"title":"基于小波包变换和极限学习机的电能质量事件分类","authors":"C. Naik, Faizal M. F. Hafiz, A. Swain, A. K. Kar","doi":"10.1109/SPEC.2016.7846169","DOIUrl":null,"url":null,"abstract":"A novel method of classifying Power quality (PQ) events using Wavelet Packet Transform (WPT) and Extreme Learning Machines (ELM) has been proposed. In recent times, the power quality has been a major research concern due to changing regulations, liberalized distribution market and increased use of power electronic based equipment. The first step of any remedial action requires proper identification of PQ events. One of the major challenge of this event identification is to extract significant features from the limited measurements, which can subsequently be used for the classification. Therefore, in the present study Wavelet Packet Transform (WPT) has been used to obtain several mathematical features. These features can segregate both single and simultaneous PQ event occurrences. Further to improve the classification performance, the ELM based classifier has been used. This classifier significantly reduces the training time by many-fold. The performance of the proposed approach has been compared with ANN based classifier considering over 1000 PQ signals from various PQ events. The results of the simulation demonstrate that the proposed approach can achieve over 99% classification accuracy.","PeriodicalId":403316,"journal":{"name":"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Classification of power quality events using wavelet packet transform and extreme learning machine\",\"authors\":\"C. Naik, Faizal M. F. Hafiz, A. Swain, A. K. Kar\",\"doi\":\"10.1109/SPEC.2016.7846169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel method of classifying Power quality (PQ) events using Wavelet Packet Transform (WPT) and Extreme Learning Machines (ELM) has been proposed. In recent times, the power quality has been a major research concern due to changing regulations, liberalized distribution market and increased use of power electronic based equipment. The first step of any remedial action requires proper identification of PQ events. One of the major challenge of this event identification is to extract significant features from the limited measurements, which can subsequently be used for the classification. Therefore, in the present study Wavelet Packet Transform (WPT) has been used to obtain several mathematical features. These features can segregate both single and simultaneous PQ event occurrences. Further to improve the classification performance, the ELM based classifier has been used. This classifier significantly reduces the training time by many-fold. The performance of the proposed approach has been compared with ANN based classifier considering over 1000 PQ signals from various PQ events. The results of the simulation demonstrate that the proposed approach can achieve over 99% classification accuracy.\",\"PeriodicalId\":403316,\"journal\":{\"name\":\"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPEC.2016.7846169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEC.2016.7846169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of power quality events using wavelet packet transform and extreme learning machine
A novel method of classifying Power quality (PQ) events using Wavelet Packet Transform (WPT) and Extreme Learning Machines (ELM) has been proposed. In recent times, the power quality has been a major research concern due to changing regulations, liberalized distribution market and increased use of power electronic based equipment. The first step of any remedial action requires proper identification of PQ events. One of the major challenge of this event identification is to extract significant features from the limited measurements, which can subsequently be used for the classification. Therefore, in the present study Wavelet Packet Transform (WPT) has been used to obtain several mathematical features. These features can segregate both single and simultaneous PQ event occurrences. Further to improve the classification performance, the ELM based classifier has been used. This classifier significantly reduces the training time by many-fold. The performance of the proposed approach has been compared with ANN based classifier considering over 1000 PQ signals from various PQ events. The results of the simulation demonstrate that the proposed approach can achieve over 99% classification accuracy.