射线追踪代数曲面

P. Hanrahan
{"title":"射线追踪代数曲面","authors":"P. Hanrahan","doi":"10.1145/800059.801136","DOIUrl":null,"url":null,"abstract":"Many interesting surfaces can be written as polynomial functions of the spatial coordinates, often of low degree. We present a method based on a ray casting algorithm, extended to work in more than three dimensions, to produce pictures of these surfaces. The method uses a symbolic algebra system to automatically derive the equation of intersection between the ray and the surface and then solves this equation using an exact polynomial root finding algorithm. Included are illustrations of the cusp catastrophe surface, and two unusually shaped quartic surfaces, Kummer's quadruple and Steiner's surface.","PeriodicalId":381383,"journal":{"name":"Proceedings of the 10th annual conference on Computer graphics and interactive techniques","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1983-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"156","resultStr":"{\"title\":\"Ray tracing algebraic surfaces\",\"authors\":\"P. Hanrahan\",\"doi\":\"10.1145/800059.801136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many interesting surfaces can be written as polynomial functions of the spatial coordinates, often of low degree. We present a method based on a ray casting algorithm, extended to work in more than three dimensions, to produce pictures of these surfaces. The method uses a symbolic algebra system to automatically derive the equation of intersection between the ray and the surface and then solves this equation using an exact polynomial root finding algorithm. Included are illustrations of the cusp catastrophe surface, and two unusually shaped quartic surfaces, Kummer's quadruple and Steiner's surface.\",\"PeriodicalId\":381383,\"journal\":{\"name\":\"Proceedings of the 10th annual conference on Computer graphics and interactive techniques\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1983-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"156\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th annual conference on Computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800059.801136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800059.801136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 156

摘要

许多有趣的曲面可以写成空间坐标的多项式函数,通常是低阶的。我们提出了一种基于光线投射算法的方法,扩展到三维以上的工作,以产生这些表面的图像。该方法采用符号代数系统自动导出射线与曲面的交点方程,然后采用精确多项式求根算法求解该方程。包括尖突变表面的插图,以及两个形状异常的四次表面,Kummer的四次表面和Steiner的表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ray tracing algebraic surfaces
Many interesting surfaces can be written as polynomial functions of the spatial coordinates, often of low degree. We present a method based on a ray casting algorithm, extended to work in more than three dimensions, to produce pictures of these surfaces. The method uses a symbolic algebra system to automatically derive the equation of intersection between the ray and the surface and then solves this equation using an exact polynomial root finding algorithm. Included are illustrations of the cusp catastrophe surface, and two unusually shaped quartic surfaces, Kummer's quadruple and Steiner's surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信