S. Pavlidis, C. D. Morcillo, P. Song, W. Khan, R. Fitch, J. Gillespie, Rey Febo, T. Quach, J. Papapolymerou
{"title":"一种混合GaN/有机x波段发射模块","authors":"S. Pavlidis, C. D. Morcillo, P. Song, W. Khan, R. Fitch, J. Gillespie, Rey Febo, T. Quach, J. Papapolymerou","doi":"10.1109/RWS.2013.6486701","DOIUrl":null,"url":null,"abstract":"The design and implementation of a compact, flexible and lightweight X-band transmitter (Tx) module based on high-power gallium nitride (GaN) transistor technology and a low-cost organic package made from liquid crystal polymer (LCP) is presented. In-package measurements of the power amplifier (PA) at 8 GHz show a P.A.E.max of >31%, P1dB of 20 dBm and gain of 11.42 dB. A 4×1 patch antenna array was also fabricated on the same platform. Though no thermal management was used, an effective isotropically radiated power (EIRP) in excess of 20 dBm at 10 GHz was measured for the transmitter module, consisting of only a single-stage PA and antenna array, thus demonstrating that even greater performance can be achieved in the future.","PeriodicalId":286070,"journal":{"name":"2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A hybrid GaN/organic X-band transmitter module\",\"authors\":\"S. Pavlidis, C. D. Morcillo, P. Song, W. Khan, R. Fitch, J. Gillespie, Rey Febo, T. Quach, J. Papapolymerou\",\"doi\":\"10.1109/RWS.2013.6486701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design and implementation of a compact, flexible and lightweight X-band transmitter (Tx) module based on high-power gallium nitride (GaN) transistor technology and a low-cost organic package made from liquid crystal polymer (LCP) is presented. In-package measurements of the power amplifier (PA) at 8 GHz show a P.A.E.max of >31%, P1dB of 20 dBm and gain of 11.42 dB. A 4×1 patch antenna array was also fabricated on the same platform. Though no thermal management was used, an effective isotropically radiated power (EIRP) in excess of 20 dBm at 10 GHz was measured for the transmitter module, consisting of only a single-stage PA and antenna array, thus demonstrating that even greater performance can be achieved in the future.\",\"PeriodicalId\":286070,\"journal\":{\"name\":\"2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RWS.2013.6486701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS.2013.6486701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The design and implementation of a compact, flexible and lightweight X-band transmitter (Tx) module based on high-power gallium nitride (GaN) transistor technology and a low-cost organic package made from liquid crystal polymer (LCP) is presented. In-package measurements of the power amplifier (PA) at 8 GHz show a P.A.E.max of >31%, P1dB of 20 dBm and gain of 11.42 dB. A 4×1 patch antenna array was also fabricated on the same platform. Though no thermal management was used, an effective isotropically radiated power (EIRP) in excess of 20 dBm at 10 GHz was measured for the transmitter module, consisting of only a single-stage PA and antenna array, thus demonstrating that even greater performance can be achieved in the future.