T. Gunst, Jing-Tao Lu, T. Markussen, A. Jauho, M. Brandbyge
{"title":"无序石墨烯反点器件的热电性质","authors":"T. Gunst, Jing-Tao Lu, T. Markussen, A. Jauho, M. Brandbyge","doi":"10.1109/IWCE.2012.6242835","DOIUrl":null,"url":null,"abstract":"We calculate the electronic and thermal transport properties of devices based on finite graphene antidot lattices (GALs) connected to perfect graphene leads. We use an atomistic approach based on the π-tight-binding model, the Brenner potential, and employing recursive Green's functions. We consider the effect of random disorder on the electronic and thermal transport properties, and examine the potential gain of thermoelectric merit by tailoring of the disorder. We propose several routes to optimize the transport properties of the GAL systems. Finally, we illustrate how quantum thermal transport can be addressed by molecular dynamics simulations, and compare to the Green's function results for the GAL systems in the ballistic limit.","PeriodicalId":375453,"journal":{"name":"2012 15th International Workshop on Computational Electronics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Thermoelectric properties of disordered graphene antidot devices\",\"authors\":\"T. Gunst, Jing-Tao Lu, T. Markussen, A. Jauho, M. Brandbyge\",\"doi\":\"10.1109/IWCE.2012.6242835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We calculate the electronic and thermal transport properties of devices based on finite graphene antidot lattices (GALs) connected to perfect graphene leads. We use an atomistic approach based on the π-tight-binding model, the Brenner potential, and employing recursive Green's functions. We consider the effect of random disorder on the electronic and thermal transport properties, and examine the potential gain of thermoelectric merit by tailoring of the disorder. We propose several routes to optimize the transport properties of the GAL systems. Finally, we illustrate how quantum thermal transport can be addressed by molecular dynamics simulations, and compare to the Green's function results for the GAL systems in the ballistic limit.\",\"PeriodicalId\":375453,\"journal\":{\"name\":\"2012 15th International Workshop on Computational Electronics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 15th International Workshop on Computational Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2012.6242835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 15th International Workshop on Computational Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2012.6242835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermoelectric properties of disordered graphene antidot devices
We calculate the electronic and thermal transport properties of devices based on finite graphene antidot lattices (GALs) connected to perfect graphene leads. We use an atomistic approach based on the π-tight-binding model, the Brenner potential, and employing recursive Green's functions. We consider the effect of random disorder on the electronic and thermal transport properties, and examine the potential gain of thermoelectric merit by tailoring of the disorder. We propose several routes to optimize the transport properties of the GAL systems. Finally, we illustrate how quantum thermal transport can be addressed by molecular dynamics simulations, and compare to the Green's function results for the GAL systems in the ballistic limit.