差分输入输出CMOS (DINO-CMOS) -高性能和节能的逻辑系列

M. Haber, I. Levi, Y. Yehoshua, A. Fish
{"title":"差分输入输出CMOS (DINO-CMOS) -高性能和节能的逻辑系列","authors":"M. Haber, I. Levi, Y. Yehoshua, A. Fish","doi":"10.1109/S3S.2017.8309253","DOIUrl":null,"url":null,"abstract":"Conventional static CMOS logic is the most popular circuit design style in today's digital designs. For many years CMOS logic gates have been preferred mainly for their rail-to-rail swings, strong on/off states, robust operation, large noise margins and low static power. However, one of the main drawbacks of CMOS gates is the need to implement complementary computation networks: the NMOS based pulldown network (PDN) and the pull-up (PUN) PMOS network. Both networks (depending on the logic function of gate) consist of a few stacked transistors. The number of stacked transistors increases with the increase of the Fan-In of the gate, which usually requires upsizing these transistors to improve performance and noise margins. This issue is even more crucial in gates such as NORs, where low mobility stacked PMOS transistors significantly limit the performance of the gate and require large transistors, thus increasing the intrinsic capacitance and power dissipation of the gate. An example of a conventional CMOS NOR3 gate is shown in Fig. 1(a).","PeriodicalId":333587,"journal":{"name":"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential input output CMOS (DINO-CMOS) — High performance and energy efficient logic family\",\"authors\":\"M. Haber, I. Levi, Y. Yehoshua, A. Fish\",\"doi\":\"10.1109/S3S.2017.8309253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional static CMOS logic is the most popular circuit design style in today's digital designs. For many years CMOS logic gates have been preferred mainly for their rail-to-rail swings, strong on/off states, robust operation, large noise margins and low static power. However, one of the main drawbacks of CMOS gates is the need to implement complementary computation networks: the NMOS based pulldown network (PDN) and the pull-up (PUN) PMOS network. Both networks (depending on the logic function of gate) consist of a few stacked transistors. The number of stacked transistors increases with the increase of the Fan-In of the gate, which usually requires upsizing these transistors to improve performance and noise margins. This issue is even more crucial in gates such as NORs, where low mobility stacked PMOS transistors significantly limit the performance of the gate and require large transistors, thus increasing the intrinsic capacitance and power dissipation of the gate. An example of a conventional CMOS NOR3 gate is shown in Fig. 1(a).\",\"PeriodicalId\":333587,\"journal\":{\"name\":\"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/S3S.2017.8309253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S3S.2017.8309253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的静态CMOS逻辑是当今数字设计中最流行的电路设计风格。多年来,CMOS逻辑门主要因其轨到轨摆动,强开/关状态,稳健运行,大噪声裕度和低静态功率而受到青睐。然而,CMOS门的主要缺点之一是需要实现互补计算网络:基于NMOS的下拉网络(PDN)和上拉网络(PUN)的PMOS网络。这两种网络(取决于门的逻辑功能)都由几个堆叠的晶体管组成。堆叠晶体管的数量随着栅极扇入的增加而增加,这通常需要增大这些晶体管的尺寸以提高性能和噪声裕度。这个问题在诸如NORs之类的栅极中更为关键,在这些栅极中,低迁移率堆叠的PMOS晶体管极大地限制了栅极的性能,并且需要大的晶体管,从而增加了栅极的固有电容和功耗。图1(a)显示了一个传统CMOS NOR3门的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential input output CMOS (DINO-CMOS) — High performance and energy efficient logic family
Conventional static CMOS logic is the most popular circuit design style in today's digital designs. For many years CMOS logic gates have been preferred mainly for their rail-to-rail swings, strong on/off states, robust operation, large noise margins and low static power. However, one of the main drawbacks of CMOS gates is the need to implement complementary computation networks: the NMOS based pulldown network (PDN) and the pull-up (PUN) PMOS network. Both networks (depending on the logic function of gate) consist of a few stacked transistors. The number of stacked transistors increases with the increase of the Fan-In of the gate, which usually requires upsizing these transistors to improve performance and noise margins. This issue is even more crucial in gates such as NORs, where low mobility stacked PMOS transistors significantly limit the performance of the gate and require large transistors, thus increasing the intrinsic capacitance and power dissipation of the gate. An example of a conventional CMOS NOR3 gate is shown in Fig. 1(a).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信