多幅图像的二维结构和运动:最小二乘方法

Camillo J. Taylor, D. Kriegman, P. Anandan
{"title":"多幅图像的二维结构和运动:最小二乘方法","authors":"Camillo J. Taylor, D. Kriegman, P. Anandan","doi":"10.1109/WVM.1991.212801","DOIUrl":null,"url":null,"abstract":"The authors address a special case of the structure from motion problem for static scenes where the camera positions and feature points are confined to the two-dimensional plane. This problem is relevant to indoor mobile robots that construct a map of their environment from vertical line correspondences. The algorithm is based on the minimization of the mean square difference between the projection of the reconstructed scene and the actual image measurements. The formulation of this objective function allows for an arbitrary number of images and feature points; therefore, the algorithm can take advantage of all of the available image data simultaneously. A fast, effective method for minimizing the resulting non-linear objective function is also presented.<<ETX>>","PeriodicalId":208481,"journal":{"name":"Proceedings of the IEEE Workshop on Visual Motion","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Structure and motion in two dimensions from multiple images: a least squares approach\",\"authors\":\"Camillo J. Taylor, D. Kriegman, P. Anandan\",\"doi\":\"10.1109/WVM.1991.212801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors address a special case of the structure from motion problem for static scenes where the camera positions and feature points are confined to the two-dimensional plane. This problem is relevant to indoor mobile robots that construct a map of their environment from vertical line correspondences. The algorithm is based on the minimization of the mean square difference between the projection of the reconstructed scene and the actual image measurements. The formulation of this objective function allows for an arbitrary number of images and feature points; therefore, the algorithm can take advantage of all of the available image data simultaneously. A fast, effective method for minimizing the resulting non-linear objective function is also presented.<<ETX>>\",\"PeriodicalId\":208481,\"journal\":{\"name\":\"Proceedings of the IEEE Workshop on Visual Motion\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Workshop on Visual Motion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WVM.1991.212801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Workshop on Visual Motion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WVM.1991.212801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

作者解决了静态场景中摄像机位置和特征点局限于二维平面的运动结构问题的一个特例。这个问题与室内移动机器人有关,它从垂直线对应中构建其环境的地图。该算法基于重构场景投影与实际图像测量值之间均方差的最小化。该目标函数的公式允许任意数量的图像和特征点;因此,该算法可以同时利用所有可用的图像数据。本文还提出了一种快速有效的最小化非线性目标函数的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure and motion in two dimensions from multiple images: a least squares approach
The authors address a special case of the structure from motion problem for static scenes where the camera positions and feature points are confined to the two-dimensional plane. This problem is relevant to indoor mobile robots that construct a map of their environment from vertical line correspondences. The algorithm is based on the minimization of the mean square difference between the projection of the reconstructed scene and the actual image measurements. The formulation of this objective function allows for an arbitrary number of images and feature points; therefore, the algorithm can take advantage of all of the available image data simultaneously. A fast, effective method for minimizing the resulting non-linear objective function is also presented.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信