一类多项式微分系统的参数辨识

A. Pearson, F. Lee
{"title":"一类多项式微分系统的参数辨识","authors":"A. Pearson, F. Lee","doi":"10.1109/CDC.1984.272374","DOIUrl":null,"url":null,"abstract":"A least squares parameter identification technique is developed for a class of nonlinear deterministic systems modeled by polynomial input-output differential equations. The basis of the technique is Shinbrot's method of moment functionals using trigonometric modulating functions. Given the input-output data over sequential time intervals, the underlying computations utilize a Fast Fourier Transform algorithm on polynomials of the data without the need for estimating unknown initial conditions at the start of each finite time interval.","PeriodicalId":269680,"journal":{"name":"The 23rd IEEE Conference on Decision and Control","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1984-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parameter identification for a class of polynomial differential systems\",\"authors\":\"A. Pearson, F. Lee\",\"doi\":\"10.1109/CDC.1984.272374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A least squares parameter identification technique is developed for a class of nonlinear deterministic systems modeled by polynomial input-output differential equations. The basis of the technique is Shinbrot's method of moment functionals using trigonometric modulating functions. Given the input-output data over sequential time intervals, the underlying computations utilize a Fast Fourier Transform algorithm on polynomials of the data without the need for estimating unknown initial conditions at the start of each finite time interval.\",\"PeriodicalId\":269680,\"journal\":{\"name\":\"The 23rd IEEE Conference on Decision and Control\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 23rd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1984.272374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1984.272374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对一类由多项式输入输出微分方程建模的非线性确定性系统,提出了一种最小二乘参数辨识方法。该技术的基础是Shinbrot的使用三角调制函数的矩函数方法。给定连续时间间隔内的输入输出数据,底层计算利用对数据多项式的快速傅立叶变换算法,而无需在每个有限时间间隔开始时估计未知初始条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter identification for a class of polynomial differential systems
A least squares parameter identification technique is developed for a class of nonlinear deterministic systems modeled by polynomial input-output differential equations. The basis of the technique is Shinbrot's method of moment functionals using trigonometric modulating functions. Given the input-output data over sequential time intervals, the underlying computations utilize a Fast Fourier Transform algorithm on polynomials of the data without the need for estimating unknown initial conditions at the start of each finite time interval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信