光滑多目标投资组合优化模型及其求解方法

Chun-an Liu, T. Jiang
{"title":"光滑多目标投资组合优化模型及其求解方法","authors":"Chun-an Liu, T. Jiang","doi":"10.1109/ICITBE54178.2021.00048","DOIUrl":null,"url":null,"abstract":"A smooth multiobjective portfolio mathematics model without short selling being allowed is put forward in this paper firstly. Secondly, to obtain a sufficient number of uniformly distributed portfolio optimal solutions located on the true portfolio optimal front, a multiobjective genetic algorithm solving the smooth multiobjective portfolio model is designed. Finally, the performance of the designed algorithm is simulated by four topical benchmark portfolio test problems. The performance evaluations illustrate that the proposed algorithm can obtain faster and better convergence to the true portfolio optimal front compared with two typical multiobjective genetic algorithms.","PeriodicalId":207276,"journal":{"name":"2021 International Conference on Information Technology and Biomedical Engineering (ICITBE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smooth Multiobjective Portfolio Optimization Model and Its Solving Method\",\"authors\":\"Chun-an Liu, T. Jiang\",\"doi\":\"10.1109/ICITBE54178.2021.00048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A smooth multiobjective portfolio mathematics model without short selling being allowed is put forward in this paper firstly. Secondly, to obtain a sufficient number of uniformly distributed portfolio optimal solutions located on the true portfolio optimal front, a multiobjective genetic algorithm solving the smooth multiobjective portfolio model is designed. Finally, the performance of the designed algorithm is simulated by four topical benchmark portfolio test problems. The performance evaluations illustrate that the proposed algorithm can obtain faster and better convergence to the true portfolio optimal front compared with two typical multiobjective genetic algorithms.\",\"PeriodicalId\":207276,\"journal\":{\"name\":\"2021 International Conference on Information Technology and Biomedical Engineering (ICITBE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Information Technology and Biomedical Engineering (ICITBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITBE54178.2021.00048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Technology and Biomedical Engineering (ICITBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITBE54178.2021.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文首先提出了一个不允许卖空的光滑多目标投资组合数学模型。其次,为了获得位于真投资组合最优前沿的足够数量的均匀分布的投资组合最优解,设计了求解光滑多目标投资组合模型的多目标遗传算法。最后,通过四个主题基准组合测试问题对所设计算法的性能进行了仿真。性能评价表明,与两种典型的多目标遗传算法相比,该算法收敛速度更快,收敛到真投资组合最优前沿的效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smooth Multiobjective Portfolio Optimization Model and Its Solving Method
A smooth multiobjective portfolio mathematics model without short selling being allowed is put forward in this paper firstly. Secondly, to obtain a sufficient number of uniformly distributed portfolio optimal solutions located on the true portfolio optimal front, a multiobjective genetic algorithm solving the smooth multiobjective portfolio model is designed. Finally, the performance of the designed algorithm is simulated by four topical benchmark portfolio test problems. The performance evaluations illustrate that the proposed algorithm can obtain faster and better convergence to the true portfolio optimal front compared with two typical multiobjective genetic algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信