系列弹性致动器

G. Pratt, M. Williamson
{"title":"系列弹性致动器","authors":"G. Pratt, M. Williamson","doi":"10.1109/IROS.1995.525827","DOIUrl":null,"url":null,"abstract":"It is traditional to make the interface between an actuator and its load as stiff as possible. Despite this tradition, reducing interface stiffness offers a number of advantages, including greater shock tolerance, lower reflected inertia, more accurate and stable force control, less inadvertent damage to the environment, and the capacity for energy storage. As a trade-off, reducing interface stiffness also lowers zero motion force bandwidth. In this paper, the authors propose that for natural tasks, zero motion force bandwidth isn't everything, and incorporating series elasticity as a purposeful element within the actuator is a good idea. The authors use the term elasticity instead of compliance to indicate the presence of a passive mechanical spring in the actuator. After a discussion of the trade-offs inherent in series elastic actuators, the authors present a control system for their use under general force or impedance control. The authors conclude with test results from a revolute series-elastic actuator meant for the arms of the MIT humanoid robot Cog and for a small planetary rover.","PeriodicalId":124483,"journal":{"name":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2380","resultStr":"{\"title\":\"Series elastic actuators\",\"authors\":\"G. Pratt, M. Williamson\",\"doi\":\"10.1109/IROS.1995.525827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is traditional to make the interface between an actuator and its load as stiff as possible. Despite this tradition, reducing interface stiffness offers a number of advantages, including greater shock tolerance, lower reflected inertia, more accurate and stable force control, less inadvertent damage to the environment, and the capacity for energy storage. As a trade-off, reducing interface stiffness also lowers zero motion force bandwidth. In this paper, the authors propose that for natural tasks, zero motion force bandwidth isn't everything, and incorporating series elasticity as a purposeful element within the actuator is a good idea. The authors use the term elasticity instead of compliance to indicate the presence of a passive mechanical spring in the actuator. After a discussion of the trade-offs inherent in series elastic actuators, the authors present a control system for their use under general force or impedance control. The authors conclude with test results from a revolute series-elastic actuator meant for the arms of the MIT humanoid robot Cog and for a small planetary rover.\",\"PeriodicalId\":124483,\"journal\":{\"name\":\"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2380\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1995.525827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1995.525827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2380

摘要

传统的做法是使执行器与其负载之间的接口尽可能坚硬。尽管有这种传统,但降低界面刚度具有许多优点,包括更大的抗冲击能力、更低的反射惯性、更准确和稳定的力控制、更少的对环境的无意破坏以及能量存储能力。作为权衡,降低界面刚度也降低了零运动力带宽。在本文中,作者提出,对于自然任务,零运动力带宽并不是一切,将串联弹性作为执行器中有目的的元素是一个好主意。作者使用术语弹性,而不是顺应,以表明存在被动机械弹簧在执行器。在讨论了串联弹性致动器固有的权衡之后,作者提出了一种用于一般力或阻抗控制下的控制系统。作者总结了麻省理工学院人形机器人齿轮臂和小型行星漫游车的旋转系列弹性致动器的测试结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Series elastic actuators
It is traditional to make the interface between an actuator and its load as stiff as possible. Despite this tradition, reducing interface stiffness offers a number of advantages, including greater shock tolerance, lower reflected inertia, more accurate and stable force control, less inadvertent damage to the environment, and the capacity for energy storage. As a trade-off, reducing interface stiffness also lowers zero motion force bandwidth. In this paper, the authors propose that for natural tasks, zero motion force bandwidth isn't everything, and incorporating series elasticity as a purposeful element within the actuator is a good idea. The authors use the term elasticity instead of compliance to indicate the presence of a passive mechanical spring in the actuator. After a discussion of the trade-offs inherent in series elastic actuators, the authors present a control system for their use under general force or impedance control. The authors conclude with test results from a revolute series-elastic actuator meant for the arms of the MIT humanoid robot Cog and for a small planetary rover.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信