{"title":"量子等离子体超表面的时变密度泛函数值分析","authors":"T. Takeuchi, M. Noda, K. Yabana","doi":"10.1109/NUSOD.2019.8806774","DOIUrl":null,"url":null,"abstract":"We theoretically investigate optical properties of a quantum plasmonic metasurface composed of metallic nanoparticles that are arranged in a two-dimensional matrix form with a sub-nanometer gap. We employ a time-dependent density functional theory approach to calculate optical properties of the metasurface. They show characteristic features at gap distance smaller than 0.4 nm due to the tunneling currents that flow through the gaps.","PeriodicalId":369769,"journal":{"name":"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Analysis of Quantum Plasmonic Metasuraface by Time-Dependent Density Functional Theory\",\"authors\":\"T. Takeuchi, M. Noda, K. Yabana\",\"doi\":\"10.1109/NUSOD.2019.8806774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We theoretically investigate optical properties of a quantum plasmonic metasurface composed of metallic nanoparticles that are arranged in a two-dimensional matrix form with a sub-nanometer gap. We employ a time-dependent density functional theory approach to calculate optical properties of the metasurface. They show characteristic features at gap distance smaller than 0.4 nm due to the tunneling currents that flow through the gaps.\",\"PeriodicalId\":369769,\"journal\":{\"name\":\"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUSOD.2019.8806774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD.2019.8806774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Analysis of Quantum Plasmonic Metasuraface by Time-Dependent Density Functional Theory
We theoretically investigate optical properties of a quantum plasmonic metasurface composed of metallic nanoparticles that are arranged in a two-dimensional matrix form with a sub-nanometer gap. We employ a time-dependent density functional theory approach to calculate optical properties of the metasurface. They show characteristic features at gap distance smaller than 0.4 nm due to the tunneling currents that flow through the gaps.