增强机器学习图像分类的再现性

G. Shao, H. Zhang, J. Shao, K. Woeste, Lina Tang
{"title":"增强机器学习图像分类的再现性","authors":"G. Shao, H. Zhang, J. Shao, K. Woeste, Lina Tang","doi":"10.54364/aaiml.2022.1132","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) reproducibility needs to be informed with reliable evaluation measures. However, routine image classification is evaluated using metrics that are highly sensitive to class prevalence. Consequently, the reproducibility of ML models remains unclear due to class imbalance-induced noise. We suggest regularly using class imbalance-resistant evaluation metrics, including balanced accuracy, area under precision-recall curve, and image classification efficacy, for the evaluation of the reproducibility of ML models. Each of these evaluation metrics is conceptually consistent with and logically complements the others, and their joint use can help explain different aspects of classification performance at the whole-class level and individual class level. These metrics can be used for the validation, testing, and/or transfer of ML classifiers. Comprehensive analysis using these metrics as a routine approach strengthens the reproducibility of ML models.","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strengthening Machine Learning Reproducibility for Image Classification\",\"authors\":\"G. Shao, H. Zhang, J. Shao, K. Woeste, Lina Tang\",\"doi\":\"10.54364/aaiml.2022.1132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning (ML) reproducibility needs to be informed with reliable evaluation measures. However, routine image classification is evaluated using metrics that are highly sensitive to class prevalence. Consequently, the reproducibility of ML models remains unclear due to class imbalance-induced noise. We suggest regularly using class imbalance-resistant evaluation metrics, including balanced accuracy, area under precision-recall curve, and image classification efficacy, for the evaluation of the reproducibility of ML models. Each of these evaluation metrics is conceptually consistent with and logically complements the others, and their joint use can help explain different aspects of classification performance at the whole-class level and individual class level. These metrics can be used for the validation, testing, and/or transfer of ML classifiers. Comprehensive analysis using these metrics as a routine approach strengthens the reproducibility of ML models.\",\"PeriodicalId\":373878,\"journal\":{\"name\":\"Adv. Artif. Intell. Mach. Learn.\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Intell. Mach. Learn.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54364/aaiml.2022.1132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54364/aaiml.2022.1132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)的再现性需要可靠的评估措施。然而,常规图像分类是使用对分类流行率高度敏感的指标进行评估的。因此,由于类别不平衡引起的噪声,ML模型的可重复性仍然不清楚。我们建议定期使用抗类不平衡评价指标,包括平衡精度、精确召回曲线下面积和图像分类效率,来评估ML模型的可重复性。这些评估指标中的每一个在概念上都是一致的,并且在逻辑上是互补的,它们的联合使用可以帮助解释整个类水平和单个类水平上分类性能的不同方面。这些指标可用于ML分类器的验证、测试和/或传输。使用这些指标作为常规方法的综合分析增强了ML模型的可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strengthening Machine Learning Reproducibility for Image Classification
Machine learning (ML) reproducibility needs to be informed with reliable evaluation measures. However, routine image classification is evaluated using metrics that are highly sensitive to class prevalence. Consequently, the reproducibility of ML models remains unclear due to class imbalance-induced noise. We suggest regularly using class imbalance-resistant evaluation metrics, including balanced accuracy, area under precision-recall curve, and image classification efficacy, for the evaluation of the reproducibility of ML models. Each of these evaluation metrics is conceptually consistent with and logically complements the others, and their joint use can help explain different aspects of classification performance at the whole-class level and individual class level. These metrics can be used for the validation, testing, and/or transfer of ML classifiers. Comprehensive analysis using these metrics as a routine approach strengthens the reproducibility of ML models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信