基于CNN的摩洛哥文文字类型识别

Ali Benaissa, A. Bahri, Ahmad El Allaoui
{"title":"基于CNN的摩洛哥文文字类型识别","authors":"Ali Benaissa, A. Bahri, Ahmad El Allaoui","doi":"10.1109/IRASET52964.2022.9738376","DOIUrl":null,"url":null,"abstract":"In recent years, the classification and recognition became a hot topic in computer studies. Deep Learning algorithms present the most outstanding performance in classification and recognition issues. In this paper, we focus on applying these techniques to extract the characters types from the Moroccan official legal documents. Because of the variety of many pre-trained models. we designed a system able to Loop over each model available on TensorFlow Keras API, based on Transfer Learning technique, we trained the models on the dataset that we have built. And the outcome was that the DensNet and VGGNet models have achieved the best performance, with a validation accuracy of 98%. In addition to this, we proposed a modified model based on DenseNet201, the result achieved is 99.01% of overall accuracy.","PeriodicalId":377115,"journal":{"name":"2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characters Type Recognition In Moroccan Documents Using CNN\",\"authors\":\"Ali Benaissa, A. Bahri, Ahmad El Allaoui\",\"doi\":\"10.1109/IRASET52964.2022.9738376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the classification and recognition became a hot topic in computer studies. Deep Learning algorithms present the most outstanding performance in classification and recognition issues. In this paper, we focus on applying these techniques to extract the characters types from the Moroccan official legal documents. Because of the variety of many pre-trained models. we designed a system able to Loop over each model available on TensorFlow Keras API, based on Transfer Learning technique, we trained the models on the dataset that we have built. And the outcome was that the DensNet and VGGNet models have achieved the best performance, with a validation accuracy of 98%. In addition to this, we proposed a modified model based on DenseNet201, the result achieved is 99.01% of overall accuracy.\",\"PeriodicalId\":377115,\"journal\":{\"name\":\"2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRASET52964.2022.9738376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRASET52964.2022.9738376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,分类识别成为计算机研究的热点。深度学习算法在分类和识别问题上表现出最突出的性能。在本文中,我们着重于应用这些技术从摩洛哥官方法律文件中提取字符类型。因为各种各样的预训练模型。我们设计了一个系统,能够在TensorFlow Keras API上循环每个可用的模型,基于迁移学习技术,我们在我们建立的数据集上训练模型。结果表明,DensNet和VGGNet模型达到了最佳性能,验证准确率达到98%。除此之外,我们提出了一个基于DenseNet201的改进模型,结果达到了整体准确率的99.01%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characters Type Recognition In Moroccan Documents Using CNN
In recent years, the classification and recognition became a hot topic in computer studies. Deep Learning algorithms present the most outstanding performance in classification and recognition issues. In this paper, we focus on applying these techniques to extract the characters types from the Moroccan official legal documents. Because of the variety of many pre-trained models. we designed a system able to Loop over each model available on TensorFlow Keras API, based on Transfer Learning technique, we trained the models on the dataset that we have built. And the outcome was that the DensNet and VGGNet models have achieved the best performance, with a validation accuracy of 98%. In addition to this, we proposed a modified model based on DenseNet201, the result achieved is 99.01% of overall accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信