基于半定规划的多元到达率估计

D. Papp, F. Alizadeh
{"title":"基于半定规划的多元到达率估计","authors":"D. Papp, F. Alizadeh","doi":"10.1109/WSC.2011.6147982","DOIUrl":null,"url":null,"abstract":"An efficient method for the smooth estimation of the arrival rate of non-homogeneous, multi-dimensional Poisson processes from inexact arrivals is presented. The method provides a piecewise polynomial spline estimator. It is easily parallelized, and it exploits the sparsity of the neighborhood structure of the underlying spline space; as a result, it is very efficient and scalable. Numerical illustration is included.","PeriodicalId":246140,"journal":{"name":"Proceedings of the 2011 Winter Simulation Conference (WSC)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multivariate arrival rate estimation using semidefinite programming\",\"authors\":\"D. Papp, F. Alizadeh\",\"doi\":\"10.1109/WSC.2011.6147982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient method for the smooth estimation of the arrival rate of non-homogeneous, multi-dimensional Poisson processes from inexact arrivals is presented. The method provides a piecewise polynomial spline estimator. It is easily parallelized, and it exploits the sparsity of the neighborhood structure of the underlying spline space; as a result, it is very efficient and scalable. Numerical illustration is included.\",\"PeriodicalId\":246140,\"journal\":{\"name\":\"Proceedings of the 2011 Winter Simulation Conference (WSC)\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2011 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2011.6147982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2011.6147982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种从不精确到达光滑估计非齐次多维泊松过程到达率的方法。该方法提供了一个分段多项式样条估计。它易于并行化,并且利用了底层样条空间邻域结构的稀疏性;因此,它非常高效且可扩展。包括数值说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate arrival rate estimation using semidefinite programming
An efficient method for the smooth estimation of the arrival rate of non-homogeneous, multi-dimensional Poisson processes from inexact arrivals is presented. The method provides a piecewise polynomial spline estimator. It is easily parallelized, and it exploits the sparsity of the neighborhood structure of the underlying spline space; as a result, it is very efficient and scalable. Numerical illustration is included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信