{"title":"基于粒子群优化算法的无人机控制参数整定","authors":"T. Mac, C. Copot, Trung Tran Duc, R. Keyser","doi":"10.1109/AQTR.2016.7501380","DOIUrl":null,"url":null,"abstract":"In this paper, a proposed particle swarm optimization called multi-objective particle swarm optimization (MOPSO) with an accelerated update methodology is employed to tune Proportional-Integral-Derivative (PID) controller for an AR.Drone quadrotor. The proposed approach is to modify the velocity formula of the general PSO systems in order for improving the searching efficiency and actual execution time. Three PID control parameters, i.e., the proportional gain Kp, integral gain K; and derivative gain Kd are required to form a parameter vector which is considered as a particle of PSO. To derive the optimal PID parameters for the Ar.Drone, the modified update method is employed to move the positions of all particles in the population. In the meanwhile, multi-objective functions defined for PID controller optimization problems are minimized. The results verify that the proposed MOPSO is able to perform appropriately in Ar.Drone control system.","PeriodicalId":110627,"journal":{"name":"2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"AR.Drone UAV control parameters tuning based on particle swarm optimization algorithm\",\"authors\":\"T. Mac, C. Copot, Trung Tran Duc, R. Keyser\",\"doi\":\"10.1109/AQTR.2016.7501380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a proposed particle swarm optimization called multi-objective particle swarm optimization (MOPSO) with an accelerated update methodology is employed to tune Proportional-Integral-Derivative (PID) controller for an AR.Drone quadrotor. The proposed approach is to modify the velocity formula of the general PSO systems in order for improving the searching efficiency and actual execution time. Three PID control parameters, i.e., the proportional gain Kp, integral gain K; and derivative gain Kd are required to form a parameter vector which is considered as a particle of PSO. To derive the optimal PID parameters for the Ar.Drone, the modified update method is employed to move the positions of all particles in the population. In the meanwhile, multi-objective functions defined for PID controller optimization problems are minimized. The results verify that the proposed MOPSO is able to perform appropriately in Ar.Drone control system.\",\"PeriodicalId\":110627,\"journal\":{\"name\":\"2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AQTR.2016.7501380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AQTR.2016.7501380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AR.Drone UAV control parameters tuning based on particle swarm optimization algorithm
In this paper, a proposed particle swarm optimization called multi-objective particle swarm optimization (MOPSO) with an accelerated update methodology is employed to tune Proportional-Integral-Derivative (PID) controller for an AR.Drone quadrotor. The proposed approach is to modify the velocity formula of the general PSO systems in order for improving the searching efficiency and actual execution time. Three PID control parameters, i.e., the proportional gain Kp, integral gain K; and derivative gain Kd are required to form a parameter vector which is considered as a particle of PSO. To derive the optimal PID parameters for the Ar.Drone, the modified update method is employed to move the positions of all particles in the population. In the meanwhile, multi-objective functions defined for PID controller optimization problems are minimized. The results verify that the proposed MOPSO is able to perform appropriately in Ar.Drone control system.