利用表征学习对物联网社会关系进行分类

Jamisson J. Júnior, T. S. Figueiredo, R. Lopes, L. C. B. Torres, Bruno P. Santos
{"title":"利用表征学习对物联网社会关系进行分类","authors":"Jamisson J. Júnior, T. S. Figueiredo, R. Lopes, L. C. B. Torres, Bruno P. Santos","doi":"10.5753/courb.2022.223493","DOIUrl":null,"url":null,"abstract":"A Internet of Things (IoT) tem sido marcada pelas interações entre dispositivos que cooperam para realizar atividades. A partir deste ambiente cibernético e conectado, um possível paradigma derivado é o Social IoT (SIoT), onde múltiplos tipos de relacionamentos e confiabilidade podem ser estabelecidos entre dispositivos. Neste cenário, abordamos as questões de como modelar laços sociais em IoT e na proposição de modelos para, automaticamente, classificar e predizer relações em SIoT. Este artigo propõe a utilização de aprendizado por representação para classificar diferentes tipos de laços sociais em SIoT. Para isso, utiliza-se como estratégias para classificação Graph Neural Networks (GNN) ou Algoritmos Tradicionais de Classificação (ATC). Em nossos experimentos, GNN é rápido na etapa de treinamento e apresenta métricas F1-{macro, micro} de 0.61 e 0.88, respectivamente. Ao usar ATC, o treinamento é 121× até 11.235× mais lento que GNN, ao passo que as métricas F1-score alcançam 0.86 e 0.95, respetivamente.","PeriodicalId":174255,"journal":{"name":"Anais do VI Workshop de Computação Urbana (CoUrb 2022)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Utilizando aprendizado por representação para a classificação de laços sociais da IoT\",\"authors\":\"Jamisson J. Júnior, T. S. Figueiredo, R. Lopes, L. C. B. Torres, Bruno P. Santos\",\"doi\":\"10.5753/courb.2022.223493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Internet of Things (IoT) tem sido marcada pelas interações entre dispositivos que cooperam para realizar atividades. A partir deste ambiente cibernético e conectado, um possível paradigma derivado é o Social IoT (SIoT), onde múltiplos tipos de relacionamentos e confiabilidade podem ser estabelecidos entre dispositivos. Neste cenário, abordamos as questões de como modelar laços sociais em IoT e na proposição de modelos para, automaticamente, classificar e predizer relações em SIoT. Este artigo propõe a utilização de aprendizado por representação para classificar diferentes tipos de laços sociais em SIoT. Para isso, utiliza-se como estratégias para classificação Graph Neural Networks (GNN) ou Algoritmos Tradicionais de Classificação (ATC). Em nossos experimentos, GNN é rápido na etapa de treinamento e apresenta métricas F1-{macro, micro} de 0.61 e 0.88, respectivamente. Ao usar ATC, o treinamento é 121× até 11.235× mais lento que GNN, ao passo que as métricas F1-score alcançam 0.86 e 0.95, respetivamente.\",\"PeriodicalId\":174255,\"journal\":{\"name\":\"Anais do VI Workshop de Computação Urbana (CoUrb 2022)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do VI Workshop de Computação Urbana (CoUrb 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/courb.2022.223493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do VI Workshop de Computação Urbana (CoUrb 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/courb.2022.223493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

物联网(IoT)的特点是设备之间的交互,合作执行活动。从这种网络和连接的环境中,一个可能的衍生范式是社会物联网(SIoT),其中可以在设备之间建立多种类型的关系和可靠性。在这个场景中,我们解决了如何在物联网中建模社会关系的问题,并提出了在SIoT中自动分类和预测关系的模型。本文提出利用表征学习对SIoT中不同类型的社会关系进行分类。为此,它被用作图形神经网络(GNN)或传统分类算法(ATC)的分类策略。在我们的实验中,GNN在训练阶段快速,F1-{宏观,微观}指标分别为0.61和0.88。当使用ATC时,训练比GNN慢121×到11.235×,而F1评分指标分别达到0.86和0.95。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizando aprendizado por representação para a classificação de laços sociais da IoT
A Internet of Things (IoT) tem sido marcada pelas interações entre dispositivos que cooperam para realizar atividades. A partir deste ambiente cibernético e conectado, um possível paradigma derivado é o Social IoT (SIoT), onde múltiplos tipos de relacionamentos e confiabilidade podem ser estabelecidos entre dispositivos. Neste cenário, abordamos as questões de como modelar laços sociais em IoT e na proposição de modelos para, automaticamente, classificar e predizer relações em SIoT. Este artigo propõe a utilização de aprendizado por representação para classificar diferentes tipos de laços sociais em SIoT. Para isso, utiliza-se como estratégias para classificação Graph Neural Networks (GNN) ou Algoritmos Tradicionais de Classificação (ATC). Em nossos experimentos, GNN é rápido na etapa de treinamento e apresenta métricas F1-{macro, micro} de 0.61 e 0.88, respectivamente. Ao usar ATC, o treinamento é 121× até 11.235× mais lento que GNN, ao passo que as métricas F1-score alcançam 0.86 e 0.95, respetivamente.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信