剥离石墨烯作为超级电容器电极的电解质依赖比电容和电荷转移特性

Oktaviardi Bityasmawan Abdillah, A. H. Aimon, Ferry Iskandar
{"title":"剥离石墨烯作为超级电容器电极的电解质依赖比电容和电荷转移特性","authors":"Oktaviardi Bityasmawan Abdillah, A. H. Aimon, Ferry Iskandar","doi":"10.1109/ICEVT55516.2022.9924637","DOIUrl":null,"url":null,"abstract":"The specific capacitance and charge transfer properties of electrochemically exfoliated graphene (EG) are studied using various alkaline electrolytes. Scanning Electron Microscopy (SEM) and Raman spectroscopy results confirm the successful exfoliation of graphite into EG using electrochemical treatment. At similar concentrations, the prepared EG electrodes were then evaluated using different alkaline electrolytes, including LiOH, NaOH, and KOH. Cyclic voltammetry (CV) characterization result demonstrates that 1M KOH exhibits the highest specific capacitance $(116.04 \\mathrm{Fg}^{-1})$, followed by 1M LiOH $(67.29 \\mathrm{Fg}^{-1})$ and 1M NaOH $(88.26 \\mathrm{Fg}^{-1})$. Electrochemical impedance spectroscopy (EIS) result indicates that the sample tested using 1M KOH exhibits the fastest charge transfer and easiest ions penetration into graphene interlayers compared to 1M LiOH and 1M NaOH. These results indicate that the KOH electrolyte is promising for realizing a high energy and power density of EG-based supercapacitor electrodes.","PeriodicalId":115017,"journal":{"name":"2022 7th International Conference on Electric Vehicular Technology (ICEVT)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrolyte-dependent Specific Capacitance and Charge Transfer Properties of Exfoliated Graphene as an Electrode of Supercapacitor\",\"authors\":\"Oktaviardi Bityasmawan Abdillah, A. H. Aimon, Ferry Iskandar\",\"doi\":\"10.1109/ICEVT55516.2022.9924637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The specific capacitance and charge transfer properties of electrochemically exfoliated graphene (EG) are studied using various alkaline electrolytes. Scanning Electron Microscopy (SEM) and Raman spectroscopy results confirm the successful exfoliation of graphite into EG using electrochemical treatment. At similar concentrations, the prepared EG electrodes were then evaluated using different alkaline electrolytes, including LiOH, NaOH, and KOH. Cyclic voltammetry (CV) characterization result demonstrates that 1M KOH exhibits the highest specific capacitance $(116.04 \\\\mathrm{Fg}^{-1})$, followed by 1M LiOH $(67.29 \\\\mathrm{Fg}^{-1})$ and 1M NaOH $(88.26 \\\\mathrm{Fg}^{-1})$. Electrochemical impedance spectroscopy (EIS) result indicates that the sample tested using 1M KOH exhibits the fastest charge transfer and easiest ions penetration into graphene interlayers compared to 1M LiOH and 1M NaOH. These results indicate that the KOH electrolyte is promising for realizing a high energy and power density of EG-based supercapacitor electrodes.\",\"PeriodicalId\":115017,\"journal\":{\"name\":\"2022 7th International Conference on Electric Vehicular Technology (ICEVT)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Electric Vehicular Technology (ICEVT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEVT55516.2022.9924637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Electric Vehicular Technology (ICEVT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEVT55516.2022.9924637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了电化学剥离石墨烯(EG)在不同碱性电解质下的比电容和电荷转移特性。扫描电镜(SEM)和拉曼光谱(Raman spectroscopy)结果证实了电化学处理使石墨成功剥离成EG。在相似的浓度下,用不同的碱性电解质(包括LiOH、NaOH和KOH)对制备的EG电极进行评价。循环伏安(CV)表征结果表明,1M KOH具有最高的比电容$(116.04 \mathrm{Fg}^{-1})$,其次是1M LiOH $(67.29 \mathrm{Fg}^{-1})$和1M NaOH $(88.26 \mathrm{Fg}^{-1})$。电化学阻抗谱(EIS)结果表明,与1M LiOH和1M NaOH相比,使用1M KOH测试的样品表现出最快的电荷转移和最容易渗透到石墨烯中间层的离子。这些结果表明,KOH电解液有望实现高能量和功率密度的egg基超级电容器电极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrolyte-dependent Specific Capacitance and Charge Transfer Properties of Exfoliated Graphene as an Electrode of Supercapacitor
The specific capacitance and charge transfer properties of electrochemically exfoliated graphene (EG) are studied using various alkaline electrolytes. Scanning Electron Microscopy (SEM) and Raman spectroscopy results confirm the successful exfoliation of graphite into EG using electrochemical treatment. At similar concentrations, the prepared EG electrodes were then evaluated using different alkaline electrolytes, including LiOH, NaOH, and KOH. Cyclic voltammetry (CV) characterization result demonstrates that 1M KOH exhibits the highest specific capacitance $(116.04 \mathrm{Fg}^{-1})$, followed by 1M LiOH $(67.29 \mathrm{Fg}^{-1})$ and 1M NaOH $(88.26 \mathrm{Fg}^{-1})$. Electrochemical impedance spectroscopy (EIS) result indicates that the sample tested using 1M KOH exhibits the fastest charge transfer and easiest ions penetration into graphene interlayers compared to 1M LiOH and 1M NaOH. These results indicate that the KOH electrolyte is promising for realizing a high energy and power density of EG-based supercapacitor electrodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信