针对相关输入数据的NLMS算法的改进随机模型

J. Kolodziej, O. J. Tobias, R. Seara
{"title":"针对相关输入数据的NLMS算法的改进随机模型","authors":"J. Kolodziej, O. J. Tobias, R. Seara","doi":"10.5281/ZENODO.40278","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved stochastic model for the normalized least-mean-square (NLMS) algorithm considering correlated input signals obtained from a spherically invariant random process (SIRP). A SIRP describes both Gaussian and a wide class of non-Gaussian processes, including the ones with Laplacian, K0, and Gamma marginal density functions. Hence an approximate procedure for computing high-order hyperelliptic integrals arisen from the modeling process is developed. The resulting model outperforms other existing models discussed in the open literature. Through numerical simulations the accuracy of the proposed model is verified.","PeriodicalId":176384,"journal":{"name":"2007 15th European Signal Processing Conference","volume":"211 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"An improved stochastic model of the NLMS algorithm for correlated input data\",\"authors\":\"J. Kolodziej, O. J. Tobias, R. Seara\",\"doi\":\"10.5281/ZENODO.40278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an improved stochastic model for the normalized least-mean-square (NLMS) algorithm considering correlated input signals obtained from a spherically invariant random process (SIRP). A SIRP describes both Gaussian and a wide class of non-Gaussian processes, including the ones with Laplacian, K0, and Gamma marginal density functions. Hence an approximate procedure for computing high-order hyperelliptic integrals arisen from the modeling process is developed. The resulting model outperforms other existing models discussed in the open literature. Through numerical simulations the accuracy of the proposed model is verified.\",\"PeriodicalId\":176384,\"journal\":{\"name\":\"2007 15th European Signal Processing Conference\",\"volume\":\"211 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 15th European Signal Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.40278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 15th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.40278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文提出了一种改进的归一化最小均方(NLMS)算法的随机模型,该模型考虑了从球不变随机过程(SIRP)中获得的相关输入信号。SIRP描述高斯过程和广泛的非高斯过程,包括具有拉普拉斯、K0和Gamma边缘密度函数的过程。由此提出了一种计算高阶超椭圆积分的近似方法。所得模型优于公开文献中讨论的其他现有模型。通过数值仿真验证了该模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved stochastic model of the NLMS algorithm for correlated input data
This paper proposes an improved stochastic model for the normalized least-mean-square (NLMS) algorithm considering correlated input signals obtained from a spherically invariant random process (SIRP). A SIRP describes both Gaussian and a wide class of non-Gaussian processes, including the ones with Laplacian, K0, and Gamma marginal density functions. Hence an approximate procedure for computing high-order hyperelliptic integrals arisen from the modeling process is developed. The resulting model outperforms other existing models discussed in the open literature. Through numerical simulations the accuracy of the proposed model is verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信