快速节能的人力辅助刚度调制动力传动设计

Wonseok Shin, Gun-Cheol Park, JooYong Lee, Handdeut Chang, Jung Kim
{"title":"快速节能的人力辅助刚度调制动力传动设计","authors":"Wonseok Shin, Gun-Cheol Park, JooYong Lee, Handdeut Chang, Jung Kim","doi":"10.1109/ICRA48506.2021.9561044","DOIUrl":null,"url":null,"abstract":"Compliance in robot actuation provides a solution to perform safe physical human-robot interaction. Conventional compliant actuators (variable stiffness actuators, series elastic actuators) used more than two motors or closed-loop controller to modulate both stiffness and equilibrium position independently. These actuators are complex, lack of energy efficiency, and have limited stiffness range. In conjunction with an active, positive stiffness modulation, implementing a passive negative stiffness element enabled a compact design of the compliant actuator. This paper suggests a power transmission design of fast and energy-efficient stiffness modulation based on this new compliant actuator concept. First, the double slider-crank mechanism made fast stiffness modulation and high energy-efficiency. Second, positioning the leaf spring’s bending location to the center also enabled the fast stiffness modulation speed and wide range stiffness modulation. Third, optimized elliptical cam with compression spring generated negative stiffness in output. We provide theoretical modeling of each mechanical drivetrains and characterization of positive stiffness modulation (range and speed) and negative stiffness with corresponding power consumption experimentally.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Power Transmission Design of Fast and Energy-Efficient Stiffness Modulation for Human Power Assistance\",\"authors\":\"Wonseok Shin, Gun-Cheol Park, JooYong Lee, Handdeut Chang, Jung Kim\",\"doi\":\"10.1109/ICRA48506.2021.9561044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compliance in robot actuation provides a solution to perform safe physical human-robot interaction. Conventional compliant actuators (variable stiffness actuators, series elastic actuators) used more than two motors or closed-loop controller to modulate both stiffness and equilibrium position independently. These actuators are complex, lack of energy efficiency, and have limited stiffness range. In conjunction with an active, positive stiffness modulation, implementing a passive negative stiffness element enabled a compact design of the compliant actuator. This paper suggests a power transmission design of fast and energy-efficient stiffness modulation based on this new compliant actuator concept. First, the double slider-crank mechanism made fast stiffness modulation and high energy-efficiency. Second, positioning the leaf spring’s bending location to the center also enabled the fast stiffness modulation speed and wide range stiffness modulation. Third, optimized elliptical cam with compression spring generated negative stiffness in output. We provide theoretical modeling of each mechanical drivetrains and characterization of positive stiffness modulation (range and speed) and negative stiffness with corresponding power consumption experimentally.\",\"PeriodicalId\":108312,\"journal\":{\"name\":\"2021 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48506.2021.9561044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9561044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

机器人驱动中的顺应性为实现安全的人机物理交互提供了一种解决方案。传统的柔性作动器(可变刚度作动器、串联弹性作动器)采用两台以上电机或闭环控制器分别对刚度和平衡位置进行独立调制。这些执行器结构复杂,缺乏能效,并且刚度范围有限。结合主动、正刚度调制,实现被动负刚度元件,实现了柔性执行器的紧凑设计。本文提出了一种基于柔性作动器的快速节能刚度调制的动力传动设计。首先,双滑块曲柄机构实现了快速的刚度调制和高能效。其次,将板簧的弯曲位置定位在中心位置,使得刚度调制速度快,刚度调制范围大。优化后的带压缩弹簧的椭圆凸轮输出刚度为负。我们提供了每个机械传动系统的理论建模和表征正刚度调制(范围和速度)和负刚度与相应的功耗实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power Transmission Design of Fast and Energy-Efficient Stiffness Modulation for Human Power Assistance
Compliance in robot actuation provides a solution to perform safe physical human-robot interaction. Conventional compliant actuators (variable stiffness actuators, series elastic actuators) used more than two motors or closed-loop controller to modulate both stiffness and equilibrium position independently. These actuators are complex, lack of energy efficiency, and have limited stiffness range. In conjunction with an active, positive stiffness modulation, implementing a passive negative stiffness element enabled a compact design of the compliant actuator. This paper suggests a power transmission design of fast and energy-efficient stiffness modulation based on this new compliant actuator concept. First, the double slider-crank mechanism made fast stiffness modulation and high energy-efficiency. Second, positioning the leaf spring’s bending location to the center also enabled the fast stiffness modulation speed and wide range stiffness modulation. Third, optimized elliptical cam with compression spring generated negative stiffness in output. We provide theoretical modeling of each mechanical drivetrains and characterization of positive stiffness modulation (range and speed) and negative stiffness with corresponding power consumption experimentally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信