4D双向点阵数字滤波器

M. Kousoulis, C. A. Coutras, G. Antoniou
{"title":"4D双向点阵数字滤波器","authors":"M. Kousoulis, C. A. Coutras, G. Antoniou","doi":"10.1109/LASCAS.2019.8667598","DOIUrl":null,"url":null,"abstract":"A four–dimension (4D) bidirectional digital filter, having a minimum number of delay elements, is presented. This filter, besides having a minimum number of delay elements, also has an absolutely minimal state–space vector. Furthermore the transfer function, of the proposed 4D filter, is characterized by the all–pass property as in the well known classical one–dimension (1D) case. Four–dimension and two–dimension (2D) low–order examples are provided to show the features of the circuit and state–space realization structures.","PeriodicalId":142430,"journal":{"name":"2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCAS)","volume":"37 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"4D Bidirectional Lattice Digital Filters\",\"authors\":\"M. Kousoulis, C. A. Coutras, G. Antoniou\",\"doi\":\"10.1109/LASCAS.2019.8667598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A four–dimension (4D) bidirectional digital filter, having a minimum number of delay elements, is presented. This filter, besides having a minimum number of delay elements, also has an absolutely minimal state–space vector. Furthermore the transfer function, of the proposed 4D filter, is characterized by the all–pass property as in the well known classical one–dimension (1D) case. Four–dimension and two–dimension (2D) low–order examples are provided to show the features of the circuit and state–space realization structures.\",\"PeriodicalId\":142430,\"journal\":{\"name\":\"2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCAS)\",\"volume\":\"37 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LASCAS.2019.8667598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS.2019.8667598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种具有最小延迟元数的四维双向数字滤波器。该滤波器除了具有最小数量的延迟元素外,还具有绝对最小的状态空间向量。此外,所提出的四维滤波器的传递函数具有众所周知的经典一维(1D)情况下的全通特性。提供了四维和二维低阶示例来展示电路和状态空间实现结构的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
4D Bidirectional Lattice Digital Filters
A four–dimension (4D) bidirectional digital filter, having a minimum number of delay elements, is presented. This filter, besides having a minimum number of delay elements, also has an absolutely minimal state–space vector. Furthermore the transfer function, of the proposed 4D filter, is characterized by the all–pass property as in the well known classical one–dimension (1D) case. Four–dimension and two–dimension (2D) low–order examples are provided to show the features of the circuit and state–space realization structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信