基于蚁群优化的文本分类中关键字组合提取

Zi-jun Yu, Weigang Wu, Jing Xiao, Jun Zhang, Rui-zhang Huang, Ou Liu
{"title":"基于蚁群优化的文本分类中关键字组合提取","authors":"Zi-jun Yu, Weigang Wu, Jing Xiao, Jun Zhang, Rui-zhang Huang, Ou Liu","doi":"10.1109/SoCPaR.2009.90","DOIUrl":null,"url":null,"abstract":"Due to the increasing number of documents in digital form, the automated text categorization (TC) has become more and more promising in the last ten years. A TC system can automatically assign a document with the most suitable category, but the reason for such an assignment is usually unknown by users. To make the TC system be interpretable, it is necessary to select a group of keywords, or termed a keyword combination, to describe each text category. In this paper, we propose a novel algorithm, keyword combination extraction based on ant colony optimization (KCEACO), to search the optimal keyword combination of a target category. By extending the traditional feature selection techniques, an evaluation function is designed for evaluating a keyword combination. This function takes into account the relationships among different keywords. Experimental results show that KCEACO can efficiently find the optimal keyword combination from a large number of candidate combinations.","PeriodicalId":284743,"journal":{"name":"2009 International Conference of Soft Computing and Pattern Recognition","volume":"85 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Keyword Combination Extraction in Text Categorization Based on Ant Colony Optimization\",\"authors\":\"Zi-jun Yu, Weigang Wu, Jing Xiao, Jun Zhang, Rui-zhang Huang, Ou Liu\",\"doi\":\"10.1109/SoCPaR.2009.90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the increasing number of documents in digital form, the automated text categorization (TC) has become more and more promising in the last ten years. A TC system can automatically assign a document with the most suitable category, but the reason for such an assignment is usually unknown by users. To make the TC system be interpretable, it is necessary to select a group of keywords, or termed a keyword combination, to describe each text category. In this paper, we propose a novel algorithm, keyword combination extraction based on ant colony optimization (KCEACO), to search the optimal keyword combination of a target category. By extending the traditional feature selection techniques, an evaluation function is designed for evaluating a keyword combination. This function takes into account the relationships among different keywords. Experimental results show that KCEACO can efficiently find the optimal keyword combination from a large number of candidate combinations.\",\"PeriodicalId\":284743,\"journal\":{\"name\":\"2009 International Conference of Soft Computing and Pattern Recognition\",\"volume\":\"85 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference of Soft Computing and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SoCPaR.2009.90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference of Soft Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SoCPaR.2009.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

近十年来,随着数字化文档数量的不断增加,自动文本分类(TC)得到了越来越多的应用前景。TC系统可以自动为文档分配最合适的类别,但是用户通常不知道这种分配的原因。为了使TC系统具有可解释性,有必要选择一组关键字,或称为关键字组合,来描述每个文本类别。本文提出了一种基于蚁群优化的关键字组合提取算法(KCEACO),用于搜索目标类别的最优关键字组合。通过对传统特征选择技术的扩展,设计了一个评价函数来评价关键词组合。该函数考虑了不同关键字之间的关系。实验结果表明,KCEACO能有效地从大量候选组合中找到最优关键字组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Keyword Combination Extraction in Text Categorization Based on Ant Colony Optimization
Due to the increasing number of documents in digital form, the automated text categorization (TC) has become more and more promising in the last ten years. A TC system can automatically assign a document with the most suitable category, but the reason for such an assignment is usually unknown by users. To make the TC system be interpretable, it is necessary to select a group of keywords, or termed a keyword combination, to describe each text category. In this paper, we propose a novel algorithm, keyword combination extraction based on ant colony optimization (KCEACO), to search the optimal keyword combination of a target category. By extending the traditional feature selection techniques, an evaluation function is designed for evaluating a keyword combination. This function takes into account the relationships among different keywords. Experimental results show that KCEACO can efficiently find the optimal keyword combination from a large number of candidate combinations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信