越南文上下文敏感的恶意拼写错误纠正

L. Nguyen, Ban Phuoc Dao, Duc-Vu Nguyen, N. Nguyen
{"title":"越南文上下文敏感的恶意拼写错误纠正","authors":"L. Nguyen, Ban Phuoc Dao, Duc-Vu Nguyen, N. Nguyen","doi":"10.1109/NICS51282.2020.9335909","DOIUrl":null,"url":null,"abstract":"Spelling errors targeting specific keywords that users intentionally generate has seriously degraded the performance of social media control systems. In this paper, we show the severe effect of those misspellings and propose using a spelling correction approach for those targeted words based on context called word embedding. The data that we use within the limits of our work are Vietnamese spam email and hate speech. Also, we introduce a new and effective way to extract real misspellings to create reasonably synthetic data provided for our experiments. Our correction system results in a favorable performance on both synthetic and real data compared to Google.","PeriodicalId":308944,"journal":{"name":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Vietnamese Context-Sensitive Malicious Spelling Error Correction\",\"authors\":\"L. Nguyen, Ban Phuoc Dao, Duc-Vu Nguyen, N. Nguyen\",\"doi\":\"10.1109/NICS51282.2020.9335909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spelling errors targeting specific keywords that users intentionally generate has seriously degraded the performance of social media control systems. In this paper, we show the severe effect of those misspellings and propose using a spelling correction approach for those targeted words based on context called word embedding. The data that we use within the limits of our work are Vietnamese spam email and hate speech. Also, we introduce a new and effective way to extract real misspellings to create reasonably synthetic data provided for our experiments. Our correction system results in a favorable performance on both synthetic and real data compared to Google.\",\"PeriodicalId\":308944,\"journal\":{\"name\":\"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS51282.2020.9335909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS51282.2020.9335909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对用户故意生成的特定关键词的拼写错误严重降低了社交媒体控制系统的性能。在本文中,我们展示了这些拼写错误的严重影响,并提出了一种基于上下文的目标单词拼写纠正方法,称为单词嵌入。我们在工作范围内使用的数据是越南垃圾邮件和仇恨言论。此外,我们还引入了一种新的有效的方法来提取真实的拼写错误,从而为我们的实验提供合理的综合数据。与Google相比,我们的校正系统在合成和真实数据上都有良好的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vietnamese Context-Sensitive Malicious Spelling Error Correction
Spelling errors targeting specific keywords that users intentionally generate has seriously degraded the performance of social media control systems. In this paper, we show the severe effect of those misspellings and propose using a spelling correction approach for those targeted words based on context called word embedding. The data that we use within the limits of our work are Vietnamese spam email and hate speech. Also, we introduce a new and effective way to extract real misspellings to create reasonably synthetic data provided for our experiments. Our correction system results in a favorable performance on both synthetic and real data compared to Google.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信