空间如何引导工资趋同:以俄罗斯城市为例

Vera Ivanova
{"title":"空间如何引导工资趋同:以俄罗斯城市为例","authors":"Vera Ivanova","doi":"10.2139/ssrn.2717492","DOIUrl":null,"url":null,"abstract":"Existing empirical work on the growth of Russian regions mostly covers a short time period and considers only regional-level data, while citylevel spatial data of the postreform era remain largely ignored. Using citylevel geocoded data covering 997 cities and towns from 1996 until 2013, I nd sigma- and betaconvergence across Russian cities in wages. City wages during the period under consideration display signicant and positive spatial autocorrelation. Spatial Durbin models of the Barro regression are estimated using Markov chain Monte Carlo methodology. Estimates of the spatial models for dierent weight matrices indicate that the city wage growth is signicantly aected by wage growth rates in neighboring cities, after conditioning on initial wages.","PeriodicalId":208075,"journal":{"name":"PRN: Distributive & Economic Justice","volume":"304 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"How Space Channels Wage Convergence: The Case of Russian Cities\",\"authors\":\"Vera Ivanova\",\"doi\":\"10.2139/ssrn.2717492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing empirical work on the growth of Russian regions mostly covers a short time period and considers only regional-level data, while citylevel spatial data of the postreform era remain largely ignored. Using citylevel geocoded data covering 997 cities and towns from 1996 until 2013, I nd sigma- and betaconvergence across Russian cities in wages. City wages during the period under consideration display signicant and positive spatial autocorrelation. Spatial Durbin models of the Barro regression are estimated using Markov chain Monte Carlo methodology. Estimates of the spatial models for dierent weight matrices indicate that the city wage growth is signicantly aected by wage growth rates in neighboring cities, after conditioning on initial wages.\",\"PeriodicalId\":208075,\"journal\":{\"name\":\"PRN: Distributive & Economic Justice\",\"volume\":\"304 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRN: Distributive & Economic Justice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2717492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRN: Distributive & Economic Justice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2717492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现有的关于俄罗斯地区增长的实证工作大多覆盖时间较短,而且只考虑了区域层面的数据,而改革后时代的城市层面的空间数据在很大程度上被忽视了。利用1996年至2013年覆盖997个城镇的城市级地理编码数据,我发现了俄罗斯城市工资的sigma和betx趋同。研究期间的城市工资表现出显著的正空间自相关。利用马尔科夫链蒙特卡罗方法估计了Barro回归的空间Durbin模型。对不同权重矩阵的空间模型估计表明,在初始工资条件下,城市工资增长显著受到邻近城市工资增长率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How Space Channels Wage Convergence: The Case of Russian Cities
Existing empirical work on the growth of Russian regions mostly covers a short time period and considers only regional-level data, while citylevel spatial data of the postreform era remain largely ignored. Using citylevel geocoded data covering 997 cities and towns from 1996 until 2013, I nd sigma- and betaconvergence across Russian cities in wages. City wages during the period under consideration display signicant and positive spatial autocorrelation. Spatial Durbin models of the Barro regression are estimated using Markov chain Monte Carlo methodology. Estimates of the spatial models for dierent weight matrices indicate that the city wage growth is signicantly aected by wage growth rates in neighboring cities, after conditioning on initial wages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信