基于动态时空图卷积GRU网络的交通预测

Jinhong Li, Jian Yang, Lei Gao, Lu Wei, Fuqi Mao
{"title":"基于动态时空图卷积GRU网络的交通预测","authors":"Jinhong Li, Jian Yang, Lei Gao, Lu Wei, Fuqi Mao","doi":"10.1145/3510362.3510366","DOIUrl":null,"url":null,"abstract":"Accurate and real-time traffic state forecasting has become an important and challenging task. The correlations of temporal and spatial are important to the accuracy of traffic forecasting. We propose a novel deep learning framework, spatial-temporal GCN-GRU(ST-GGRU), to capture the spatial and temporal dependence. The proposed ST-GGRU is combined with Graph Convolutional Network and GRU. Graph Convolutional Network is used to capture the complex spatial dependence and the GRU is used to capture the traffic data temporal dependence. Experiments show that our ST-GGRU network can capture the spatial-temporal correlations throughout traffic data and the outperform state-of-art baselines algorithms on real-world traffic datasets.","PeriodicalId":407010,"journal":{"name":"Proceedings of the 2021 6th International Conference on Systems, Control and Communications","volume":"65 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dynamic Spatial-Temporal Graph Convolutional GRU Network for Traffic Forecasting\",\"authors\":\"Jinhong Li, Jian Yang, Lei Gao, Lu Wei, Fuqi Mao\",\"doi\":\"10.1145/3510362.3510366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate and real-time traffic state forecasting has become an important and challenging task. The correlations of temporal and spatial are important to the accuracy of traffic forecasting. We propose a novel deep learning framework, spatial-temporal GCN-GRU(ST-GGRU), to capture the spatial and temporal dependence. The proposed ST-GGRU is combined with Graph Convolutional Network and GRU. Graph Convolutional Network is used to capture the complex spatial dependence and the GRU is used to capture the traffic data temporal dependence. Experiments show that our ST-GGRU network can capture the spatial-temporal correlations throughout traffic data and the outperform state-of-art baselines algorithms on real-world traffic datasets.\",\"PeriodicalId\":407010,\"journal\":{\"name\":\"Proceedings of the 2021 6th International Conference on Systems, Control and Communications\",\"volume\":\"65 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 6th International Conference on Systems, Control and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3510362.3510366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 6th International Conference on Systems, Control and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510362.3510366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

准确、实时的交通状态预测已成为一项重要而富有挑战性的任务。时空相关性对交通预测的准确性有重要影响。我们提出了一种新的深度学习框架,时空GCN-GRU(ST-GGRU),以捕获空间和时间依赖性。本文提出的ST-GGRU将图卷积网络和GRU相结合。使用图卷积网络捕获复杂的空间依赖性,使用GRU捕获交通数据的时间依赖性。实验表明,我们的ST-GGRU网络可以捕获整个交通数据的时空相关性,并且在真实交通数据集上优于最先进的基线算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Spatial-Temporal Graph Convolutional GRU Network for Traffic Forecasting
Accurate and real-time traffic state forecasting has become an important and challenging task. The correlations of temporal and spatial are important to the accuracy of traffic forecasting. We propose a novel deep learning framework, spatial-temporal GCN-GRU(ST-GGRU), to capture the spatial and temporal dependence. The proposed ST-GGRU is combined with Graph Convolutional Network and GRU. Graph Convolutional Network is used to capture the complex spatial dependence and the GRU is used to capture the traffic data temporal dependence. Experiments show that our ST-GGRU network can capture the spatial-temporal correlations throughout traffic data and the outperform state-of-art baselines algorithms on real-world traffic datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信