功率半导体片上金属化过程中热机械应力的有效模拟

G. Pham, M. Pfost
{"title":"功率半导体片上金属化过程中热机械应力的有效模拟","authors":"G. Pham, M. Pfost","doi":"10.1109/EUROSIME.2015.7103146","DOIUrl":null,"url":null,"abstract":"Large power semiconductors are complex structures, their metallization usually containing many thousands of contacts or vias. Because of this, detailed FEM simulations of the whole device are nowadays not possible because of excessive simulation time. This paper introduces a simulation approach which allows quick identification of critical regions with respect to lifetime by a simplified simulation. For this, the complex layers are replaced by a much simpler equivalent layer, allowing a simulation of the whole device even including its package. In a second step, precise simulations taking all details of the structure into account are carried out, but only for the critical regions of interest. Thus, this approach gives detailed results where required with consideration of the whole structure including packaging. Further, the simulation time requirements are very moderate.","PeriodicalId":250897,"journal":{"name":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"41 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Efficient simulation of thermo-mechanical stress in the on-chip metallization of power semiconductors\",\"authors\":\"G. Pham, M. Pfost\",\"doi\":\"10.1109/EUROSIME.2015.7103146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large power semiconductors are complex structures, their metallization usually containing many thousands of contacts or vias. Because of this, detailed FEM simulations of the whole device are nowadays not possible because of excessive simulation time. This paper introduces a simulation approach which allows quick identification of critical regions with respect to lifetime by a simplified simulation. For this, the complex layers are replaced by a much simpler equivalent layer, allowing a simulation of the whole device even including its package. In a second step, precise simulations taking all details of the structure into account are carried out, but only for the critical regions of interest. Thus, this approach gives detailed results where required with consideration of the whole structure including packaging. Further, the simulation time requirements are very moderate.\",\"PeriodicalId\":250897,\"journal\":{\"name\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"volume\":\"41 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2015.7103146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2015.7103146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

大功率半导体是复杂的结构,其金属化通常包含数千个触点或过孔。因此,由于模拟时间过长,目前无法对整个装置进行详细的有限元模拟。本文介绍了一种仿真方法,通过简化的仿真可以快速识别出与寿命相关的关键区域。为此,复杂的层被一个简单得多的等效层所取代,允许模拟整个设备,甚至包括其封装。在第二步中,考虑到结构的所有细节进行精确模拟,但仅针对感兴趣的关键区域。因此,这种方法给出了详细的结果,需要考虑整个结构,包括包装。此外,仿真时间要求非常适中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient simulation of thermo-mechanical stress in the on-chip metallization of power semiconductors
Large power semiconductors are complex structures, their metallization usually containing many thousands of contacts or vias. Because of this, detailed FEM simulations of the whole device are nowadays not possible because of excessive simulation time. This paper introduces a simulation approach which allows quick identification of critical regions with respect to lifetime by a simplified simulation. For this, the complex layers are replaced by a much simpler equivalent layer, allowing a simulation of the whole device even including its package. In a second step, precise simulations taking all details of the structure into account are carried out, but only for the critical regions of interest. Thus, this approach gives detailed results where required with consideration of the whole structure including packaging. Further, the simulation time requirements are very moderate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信