Jiaqi Gu, Zheng Zhao, Chenghao Feng, Mingjie Liu, Ray T. Chen, D. Pan
{"title":"面向区域高效的光神经网络:一种基于fft的结构","authors":"Jiaqi Gu, Zheng Zhao, Chenghao Feng, Mingjie Liu, Ray T. Chen, D. Pan","doi":"10.1109/ASP-DAC47756.2020.9045156","DOIUrl":null,"url":null,"abstract":"As a promising neuromorphic framework, the optical neural network (ONN) demonstrates ultra-high inference speed with low energy consumption. However, the previous ONN architectures have high area overhead which limits their practicality. In this paper, we propose an area-efficient ONN architecture based on structured neural networks, leveraging optical fast Fourier transform for efficient computation. A two-phase software training flow with structured pruning is proposed to further reduce the optical component utilization. Experimental results demonstrate that the proposed architecture can achieve 2.2∼3.7× area cost improvement compared with the previous singular value decomposition-based architecture with comparable inference accuracy.","PeriodicalId":125112,"journal":{"name":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"20 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Towards Area-Efficient Optical Neural Networks: An FFT-based Architecture\",\"authors\":\"Jiaqi Gu, Zheng Zhao, Chenghao Feng, Mingjie Liu, Ray T. Chen, D. Pan\",\"doi\":\"10.1109/ASP-DAC47756.2020.9045156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a promising neuromorphic framework, the optical neural network (ONN) demonstrates ultra-high inference speed with low energy consumption. However, the previous ONN architectures have high area overhead which limits their practicality. In this paper, we propose an area-efficient ONN architecture based on structured neural networks, leveraging optical fast Fourier transform for efficient computation. A two-phase software training flow with structured pruning is proposed to further reduce the optical component utilization. Experimental results demonstrate that the proposed architecture can achieve 2.2∼3.7× area cost improvement compared with the previous singular value decomposition-based architecture with comparable inference accuracy.\",\"PeriodicalId\":125112,\"journal\":{\"name\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"20 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASP-DAC47756.2020.9045156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC47756.2020.9045156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Area-Efficient Optical Neural Networks: An FFT-based Architecture
As a promising neuromorphic framework, the optical neural network (ONN) demonstrates ultra-high inference speed with low energy consumption. However, the previous ONN architectures have high area overhead which limits their practicality. In this paper, we propose an area-efficient ONN architecture based on structured neural networks, leveraging optical fast Fourier transform for efficient computation. A two-phase software training flow with structured pruning is proposed to further reduce the optical component utilization. Experimental results demonstrate that the proposed architecture can achieve 2.2∼3.7× area cost improvement compared with the previous singular value decomposition-based architecture with comparable inference accuracy.