{"title":"非线性检测方案的量子有限计量","authors":"A. Luis","doi":"10.1117/6.0000007","DOIUrl":null,"url":null,"abstract":"Quantum mechanics limit the resolution of detection schemes. Typical arrangements are based on linear processes, so that the corresponding quantum limits are usually understood as unsurpassable and ultimate. Recently it has been shown that nonlinear schemes allow signal detection and measurement with larger resolution than linear processes. In particular, this affects the quantum limits. We review the proposals introduced so far in this novel area of quantum metrology.","PeriodicalId":178733,"journal":{"name":"Spie Reviews","volume":"12 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Quantum-limited metrology with nonlinear detection schemes\",\"authors\":\"A. Luis\",\"doi\":\"10.1117/6.0000007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum mechanics limit the resolution of detection schemes. Typical arrangements are based on linear processes, so that the corresponding quantum limits are usually understood as unsurpassable and ultimate. Recently it has been shown that nonlinear schemes allow signal detection and measurement with larger resolution than linear processes. In particular, this affects the quantum limits. We review the proposals introduced so far in this novel area of quantum metrology.\",\"PeriodicalId\":178733,\"journal\":{\"name\":\"Spie Reviews\",\"volume\":\"12 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spie Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/6.0000007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spie Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/6.0000007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum-limited metrology with nonlinear detection schemes
Quantum mechanics limit the resolution of detection schemes. Typical arrangements are based on linear processes, so that the corresponding quantum limits are usually understood as unsurpassable and ultimate. Recently it has been shown that nonlinear schemes allow signal detection and measurement with larger resolution than linear processes. In particular, this affects the quantum limits. We review the proposals introduced so far in this novel area of quantum metrology.