时频分析:一种稀疏S变换方法

Kashyap Patel, N. Kurian, N. George
{"title":"时频分析:一种稀疏S变换方法","authors":"Kashyap Patel, N. Kurian, N. George","doi":"10.1109/ISPACS.2016.7824713","DOIUrl":null,"url":null,"abstract":"S transform, which is a powerful time frequency analysis method, has found applications in diverse areas of science and technology. The computational load offered by the S transform increases with increase in the length of the time series which is analysed. In an endeavour to reduce the computational load for time series which is sparse in the frequency domain, a new method for S transform computation is proposed in this paper. The new method uses an efficient search method to identify significant frequency indices and computes the S transform only at the selected frequency indices, thus reducing the computational burden. A simulation study has been carried out to test the efficiency of the proposed method for analytic and real-life signals. The proposed scheme has been shown to provide good signal reconstruction accuracy at a reduced computational load.","PeriodicalId":131543,"journal":{"name":"2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Time frequency analysis: A sparse S transform approach\",\"authors\":\"Kashyap Patel, N. Kurian, N. George\",\"doi\":\"10.1109/ISPACS.2016.7824713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"S transform, which is a powerful time frequency analysis method, has found applications in diverse areas of science and technology. The computational load offered by the S transform increases with increase in the length of the time series which is analysed. In an endeavour to reduce the computational load for time series which is sparse in the frequency domain, a new method for S transform computation is proposed in this paper. The new method uses an efficient search method to identify significant frequency indices and computes the S transform only at the selected frequency indices, thus reducing the computational burden. A simulation study has been carried out to test the efficiency of the proposed method for analytic and real-life signals. The proposed scheme has been shown to provide good signal reconstruction accuracy at a reduced computational load.\",\"PeriodicalId\":131543,\"journal\":{\"name\":\"2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS.2016.7824713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2016.7824713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

S变换是一种功能强大的时频分析方法,在科学技术的各个领域都有应用。分析了S变换的计算量随时间序列长度的增加而增加。为了减少频域稀疏时间序列的计算量,提出了一种新的S变换计算方法。该方法采用一种高效的搜索方法来识别重要的频率指标,并仅在选定的频率指标处计算S变换,从而减少了计算量。仿真研究验证了该方法对分析信号和实际信号的有效性。该方法在减少计算量的情况下具有良好的信号重建精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time frequency analysis: A sparse S transform approach
S transform, which is a powerful time frequency analysis method, has found applications in diverse areas of science and technology. The computational load offered by the S transform increases with increase in the length of the time series which is analysed. In an endeavour to reduce the computational load for time series which is sparse in the frequency domain, a new method for S transform computation is proposed in this paper. The new method uses an efficient search method to identify significant frequency indices and computes the S transform only at the selected frequency indices, thus reducing the computational burden. A simulation study has been carried out to test the efficiency of the proposed method for analytic and real-life signals. The proposed scheme has been shown to provide good signal reconstruction accuracy at a reduced computational load.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信