量子计算与半导体技术的协同作用

R. Verberk, D. Michalak, R. Versluis, H. Polinder, N. Samkharadze, S. Amitonov, A. Sammak, L. Tryputen, D. Brousse, R. Hanfoug
{"title":"量子计算与半导体技术的协同作用","authors":"R. Verberk, D. Michalak, R. Versluis, H. Polinder, N. Samkharadze, S. Amitonov, A. Sammak, L. Tryputen, D. Brousse, R. Hanfoug","doi":"10.1117/12.2639994","DOIUrl":null,"url":null,"abstract":"As part of the National Agenda for Quantum Technology, QuTech (TU Delft and TNO) has agreed to make quantum technology accessible to society and industry via its full-stack prototype: Quantum Inspire. This system includes two different types of programmable quantum chips: circuits made from superconducting materials (transmons), and circuits made from silicon-based materials that localize and control single-electron spins (spin qubits). Silicon-based spin qubits are a natural match to the semiconductor manufacturing community, and several industrial fabrication facilities are already producing spin-qubit chips. Here, we discuss our latest results in spin-qubit technology and highlight where the semiconducting community has opportunities to drive the field forward. Specifically, developments in the following areas would enable fabrication of more powerful spin-qubit based quantum computing devices: circuit design rules implementing cryogenic device physics models, high-fidelity gate patterning of low resistance or superconducting metals, gate-oxide defect mitigation in relevant materials, silicon-germanium heterostructure optimization, and accurate magnetic field generation from on-chip micromagnets.","PeriodicalId":287066,"journal":{"name":"European Mask and Lithography Conference","volume":"46 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergy between quantum computing and semiconductor technology\",\"authors\":\"R. Verberk, D. Michalak, R. Versluis, H. Polinder, N. Samkharadze, S. Amitonov, A. Sammak, L. Tryputen, D. Brousse, R. Hanfoug\",\"doi\":\"10.1117/12.2639994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As part of the National Agenda for Quantum Technology, QuTech (TU Delft and TNO) has agreed to make quantum technology accessible to society and industry via its full-stack prototype: Quantum Inspire. This system includes two different types of programmable quantum chips: circuits made from superconducting materials (transmons), and circuits made from silicon-based materials that localize and control single-electron spins (spin qubits). Silicon-based spin qubits are a natural match to the semiconductor manufacturing community, and several industrial fabrication facilities are already producing spin-qubit chips. Here, we discuss our latest results in spin-qubit technology and highlight where the semiconducting community has opportunities to drive the field forward. Specifically, developments in the following areas would enable fabrication of more powerful spin-qubit based quantum computing devices: circuit design rules implementing cryogenic device physics models, high-fidelity gate patterning of low resistance or superconducting metals, gate-oxide defect mitigation in relevant materials, silicon-germanium heterostructure optimization, and accurate magnetic field generation from on-chip micromagnets.\",\"PeriodicalId\":287066,\"journal\":{\"name\":\"European Mask and Lithography Conference\",\"volume\":\"46 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Mask and Lithography Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2639994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Mask and Lithography Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2639994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为国家量子技术议程的一部分,QuTech(代尔夫特理工大学和TNO)已同意通过其全栈原型:Quantum Inspire,使量子技术面向社会和工业界。该系统包括两种不同类型的可编程量子芯片:由超导材料(传输子)制成的电路,以及由硅基材料制成的电路,这些材料可以定位和控制单电子自旋(自旋量子位)。硅基自旋量子比特是半导体制造界的天然匹配,一些工业制造设施已经在生产自旋量子比特芯片。在这里,我们讨论了我们在自旋量子比特技术方面的最新成果,并强调了半导体界有机会推动该领域向前发展的地方。具体来说,以下领域的发展将使制造更强大的基于自旋量子位的量子计算设备成为可能:实现低温设备物理模型的电路设计规则,低电阻或超导金属的高保真栅极图形,相关材料的栅极氧化物缺陷减轻,硅锗异质结构优化,以及片上微磁体的精确磁场产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergy between quantum computing and semiconductor technology
As part of the National Agenda for Quantum Technology, QuTech (TU Delft and TNO) has agreed to make quantum technology accessible to society and industry via its full-stack prototype: Quantum Inspire. This system includes two different types of programmable quantum chips: circuits made from superconducting materials (transmons), and circuits made from silicon-based materials that localize and control single-electron spins (spin qubits). Silicon-based spin qubits are a natural match to the semiconductor manufacturing community, and several industrial fabrication facilities are already producing spin-qubit chips. Here, we discuss our latest results in spin-qubit technology and highlight where the semiconducting community has opportunities to drive the field forward. Specifically, developments in the following areas would enable fabrication of more powerful spin-qubit based quantum computing devices: circuit design rules implementing cryogenic device physics models, high-fidelity gate patterning of low resistance or superconducting metals, gate-oxide defect mitigation in relevant materials, silicon-germanium heterostructure optimization, and accurate magnetic field generation from on-chip micromagnets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信