{"title":"电池储能系统中压主动馈线的负荷均衡与可调度性:控制问题的提出与实验验证","authors":"Emil Namor, F. Sossan, R. Cherkaoui, M. Paolone","doi":"10.1109/ISGTEurope.2016.7856260","DOIUrl":null,"url":null,"abstract":"This paper proposes and experimentally validates a control algorithm for a grid-connected battery energy storage system (BESS) to level the consumption of a group of prosumers and dispatch their aggregated operation. The control strategy is layered in a two-stage procedure: day-ahead and intra-day operation. During day-ahead operation, the load leveled power consumption profile is determined by applying a scenario-based robust optimization using historical measurements of the aggregated feeder power consumption. In the intra-day phase, the operation of the group of prosumers is dispatched according to the profile defined during the day-ahead stage, which becomes the so-called dispatch plan. The dispatch plan is tracked in real-time by properly adjusting the injections of the BESS using model predictive control (MPC). The proposed control process is experimentally validated using a 750 kW/567 kWh BESS connected to a 20 kV feeder of the EPFL campus that interfaces loads and PV generation.","PeriodicalId":330869,"journal":{"name":"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"21 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Load leveling and dispatchability of a medium voltage active feeder through battery energy storage systems: Formulation of the control problem and experimental validation\",\"authors\":\"Emil Namor, F. Sossan, R. Cherkaoui, M. Paolone\",\"doi\":\"10.1109/ISGTEurope.2016.7856260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes and experimentally validates a control algorithm for a grid-connected battery energy storage system (BESS) to level the consumption of a group of prosumers and dispatch their aggregated operation. The control strategy is layered in a two-stage procedure: day-ahead and intra-day operation. During day-ahead operation, the load leveled power consumption profile is determined by applying a scenario-based robust optimization using historical measurements of the aggregated feeder power consumption. In the intra-day phase, the operation of the group of prosumers is dispatched according to the profile defined during the day-ahead stage, which becomes the so-called dispatch plan. The dispatch plan is tracked in real-time by properly adjusting the injections of the BESS using model predictive control (MPC). The proposed control process is experimentally validated using a 750 kW/567 kWh BESS connected to a 20 kV feeder of the EPFL campus that interfaces loads and PV generation.\",\"PeriodicalId\":330869,\"journal\":{\"name\":\"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"volume\":\"21 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2016.7856260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2016.7856260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Load leveling and dispatchability of a medium voltage active feeder through battery energy storage systems: Formulation of the control problem and experimental validation
This paper proposes and experimentally validates a control algorithm for a grid-connected battery energy storage system (BESS) to level the consumption of a group of prosumers and dispatch their aggregated operation. The control strategy is layered in a two-stage procedure: day-ahead and intra-day operation. During day-ahead operation, the load leveled power consumption profile is determined by applying a scenario-based robust optimization using historical measurements of the aggregated feeder power consumption. In the intra-day phase, the operation of the group of prosumers is dispatched according to the profile defined during the day-ahead stage, which becomes the so-called dispatch plan. The dispatch plan is tracked in real-time by properly adjusting the injections of the BESS using model predictive control (MPC). The proposed control process is experimentally validated using a 750 kW/567 kWh BESS connected to a 20 kV feeder of the EPFL campus that interfaces loads and PV generation.