基于动态线性化的PLS建模与无模型自适应控制

Mingming Lin, R. Chi, Na Lin, Zhiqing Liu
{"title":"基于动态线性化的PLS建模与无模型自适应控制","authors":"Mingming Lin, R. Chi, Na Lin, Zhiqing Liu","doi":"10.1109/DDCLS58216.2023.10166082","DOIUrl":null,"url":null,"abstract":"In this paper, a new model free adaptive control (MFAC) strategy based on partial least squares (PLS) framework is proposed to achieve trajectory tracking for multivariable nonlinear processes. The nonlinear dynamic characteristics of the multivariable systems are addressed by a dynamic linearization method and a linear PLS inner data model is obtained conse-quently including an unknown pseudo-partial derivative (PPD) parameter. Under the PLS framework, the multivariable system can be decomposed into multiple single-loop systems to facilitate the controller design. The controller design only depends on the measured input and output data. Simulation results demonstrate the effectiveness of the proposed method.","PeriodicalId":415532,"journal":{"name":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical linearization based PLS modeling and model-free adaptive control\",\"authors\":\"Mingming Lin, R. Chi, Na Lin, Zhiqing Liu\",\"doi\":\"10.1109/DDCLS58216.2023.10166082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new model free adaptive control (MFAC) strategy based on partial least squares (PLS) framework is proposed to achieve trajectory tracking for multivariable nonlinear processes. The nonlinear dynamic characteristics of the multivariable systems are addressed by a dynamic linearization method and a linear PLS inner data model is obtained conse-quently including an unknown pseudo-partial derivative (PPD) parameter. Under the PLS framework, the multivariable system can be decomposed into multiple single-loop systems to facilitate the controller design. The controller design only depends on the measured input and output data. Simulation results demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":415532,\"journal\":{\"name\":\"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS58216.2023.10166082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS58216.2023.10166082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对多变量非线性过程的轨迹跟踪问题,提出了一种基于偏最小二乘(PLS)框架的无模型自适应控制策略。采用动态线性化方法处理了多变量系统的非线性动态特性,得到了包含未知伪偏导数参数的线性PLS内部数据模型。在PLS框架下,多变量系统可以分解成多个单回路系统,便于控制器设计。控制器的设计只依赖于测量的输入和输出数据。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical linearization based PLS modeling and model-free adaptive control
In this paper, a new model free adaptive control (MFAC) strategy based on partial least squares (PLS) framework is proposed to achieve trajectory tracking for multivariable nonlinear processes. The nonlinear dynamic characteristics of the multivariable systems are addressed by a dynamic linearization method and a linear PLS inner data model is obtained conse-quently including an unknown pseudo-partial derivative (PPD) parameter. Under the PLS framework, the multivariable system can be decomposed into multiple single-loop systems to facilitate the controller design. The controller design only depends on the measured input and output data. Simulation results demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信