Christian Hakert, Kuan-Hsun Chen, Mikail Yayla, G. V. D. Brüggen, S. Blömeke, Jian-Jia Chen
{"title":"基于软件的内存损耗均衡分析环境","authors":"Christian Hakert, Kuan-Hsun Chen, Mikail Yayla, G. V. D. Brüggen, S. Blömeke, Jian-Jia Chen","doi":"10.1109/ASP-DAC47756.2020.9045418","DOIUrl":null,"url":null,"abstract":"Emerging non-volatile memory (NVM) architectures are considered as a replacement for DRAM and storage in the near future, since NVMs provide low power consumption, fast access speed, and low unit cost. Due to the lower write-endurance of NVMs, several in-memory wear-leveling techniques have been studied over the last years. Since most approaches propose or rely on specialized hardware, the techniques are often evaluated based on assumptions and in-house simulations rather than on real systems. To address this issue, we develop a setup consisting of a gem5 instance and an NVMain2.0 instance, which simulates an entire system (CPU, peripherals, etc.) together with an NVM plugged into the system. Taking a recorded memory access pattern from a low-level simulation into consideration to design and optimize wear-leveling techniques as operating system services allows a cross-layer design of wear-leveling techniques. With the insights gathered by analyzing the recorded memory access patterns, we develop a software-only wear-leveling solution, which does not require special hardware at all. This algorithm is evaluated afterwards by the full system simulation.","PeriodicalId":125112,"journal":{"name":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"14 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Software-Based Memory Analysis Environments for In-Memory Wear-Leveling\",\"authors\":\"Christian Hakert, Kuan-Hsun Chen, Mikail Yayla, G. V. D. Brüggen, S. Blömeke, Jian-Jia Chen\",\"doi\":\"10.1109/ASP-DAC47756.2020.9045418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging non-volatile memory (NVM) architectures are considered as a replacement for DRAM and storage in the near future, since NVMs provide low power consumption, fast access speed, and low unit cost. Due to the lower write-endurance of NVMs, several in-memory wear-leveling techniques have been studied over the last years. Since most approaches propose or rely on specialized hardware, the techniques are often evaluated based on assumptions and in-house simulations rather than on real systems. To address this issue, we develop a setup consisting of a gem5 instance and an NVMain2.0 instance, which simulates an entire system (CPU, peripherals, etc.) together with an NVM plugged into the system. Taking a recorded memory access pattern from a low-level simulation into consideration to design and optimize wear-leveling techniques as operating system services allows a cross-layer design of wear-leveling techniques. With the insights gathered by analyzing the recorded memory access patterns, we develop a software-only wear-leveling solution, which does not require special hardware at all. This algorithm is evaluated afterwards by the full system simulation.\",\"PeriodicalId\":125112,\"journal\":{\"name\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"14 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASP-DAC47756.2020.9045418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC47756.2020.9045418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Software-Based Memory Analysis Environments for In-Memory Wear-Leveling
Emerging non-volatile memory (NVM) architectures are considered as a replacement for DRAM and storage in the near future, since NVMs provide low power consumption, fast access speed, and low unit cost. Due to the lower write-endurance of NVMs, several in-memory wear-leveling techniques have been studied over the last years. Since most approaches propose or rely on specialized hardware, the techniques are often evaluated based on assumptions and in-house simulations rather than on real systems. To address this issue, we develop a setup consisting of a gem5 instance and an NVMain2.0 instance, which simulates an entire system (CPU, peripherals, etc.) together with an NVM plugged into the system. Taking a recorded memory access pattern from a low-level simulation into consideration to design and optimize wear-leveling techniques as operating system services allows a cross-layer design of wear-leveling techniques. With the insights gathered by analyzing the recorded memory access patterns, we develop a software-only wear-leveling solution, which does not require special hardware at all. This algorithm is evaluated afterwards by the full system simulation.