测试结构、电路和提取方法,以确定STI和多晶硅图案密度的影响半径

A. H. Chang, Kewei Zuo, Jean Wang, Douglas Yu, D. Boning
{"title":"测试结构、电路和提取方法,以确定STI和多晶硅图案密度的影响半径","authors":"A. H. Chang, Kewei Zuo, Jean Wang, Douglas Yu, D. Boning","doi":"10.1109/ISQED.2012.6187493","DOIUrl":null,"url":null,"abstract":"Advanced CMOS processes need new methodologies to extract, characterize and model process variations and their sources. Most prior studies have focused on understanding the effect of local layout features on transistor performance; limited work has been done to characterize medium-range (≈ 10μm to 2mm) pattern density effects. We propose a new methodology to extract the radius of influence, or the range of neighboring layout that should be taken into account in determining transistor characteristics, for shallow trench isolation (STI) and polysilicon pattern density. A test chip, with 130k devices under test (DUTs) and step-like pattern density layout changes, is designed in 65nm bulk CMOS technology as a case study. The extraction result of the measured data suggests that the local layout geometry, within the DUT cell size of 6μm × 8μm, is the dominant contributor to systematic device variation. Across-die medium-range layout pattern densities are found to have a statistically significant and detectable effect, but this effect is small and contributes only 2-5% of the total variation in this technology.","PeriodicalId":205874,"journal":{"name":"Thirteenth International Symposium on Quality Electronic Design (ISQED)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Test structure, circuits and extraction methods to determine the radius of infuence of STI and polysilicon pattern density\",\"authors\":\"A. H. Chang, Kewei Zuo, Jean Wang, Douglas Yu, D. Boning\",\"doi\":\"10.1109/ISQED.2012.6187493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced CMOS processes need new methodologies to extract, characterize and model process variations and their sources. Most prior studies have focused on understanding the effect of local layout features on transistor performance; limited work has been done to characterize medium-range (≈ 10μm to 2mm) pattern density effects. We propose a new methodology to extract the radius of influence, or the range of neighboring layout that should be taken into account in determining transistor characteristics, for shallow trench isolation (STI) and polysilicon pattern density. A test chip, with 130k devices under test (DUTs) and step-like pattern density layout changes, is designed in 65nm bulk CMOS technology as a case study. The extraction result of the measured data suggests that the local layout geometry, within the DUT cell size of 6μm × 8μm, is the dominant contributor to systematic device variation. Across-die medium-range layout pattern densities are found to have a statistically significant and detectable effect, but this effect is small and contributes only 2-5% of the total variation in this technology.\",\"PeriodicalId\":205874,\"journal\":{\"name\":\"Thirteenth International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thirteenth International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2012.6187493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thirteenth International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2012.6187493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

先进的CMOS工艺需要新的方法来提取、表征和建模工艺变化及其来源。大多数先前的研究都集中在了解局部布局特征对晶体管性能的影响;在表征中等范围(≈10μm至2mm)图案密度效应方面,研究人员做了有限的工作。我们提出了一种新的方法来提取影响半径,即在确定晶体管特性时应考虑的相邻布局范围,用于浅沟槽隔离(STI)和多晶硅图案密度。本文以65nm体CMOS技术为例,设计了具有130k个被测器件(dut)和阶梯模式密度布局变化的测试芯片。测量数据的提取结果表明,在被测单元尺寸为6μm × 8μm的范围内,局部布局几何是系统器件变化的主要因素。发现跨模中程布局图案密度具有统计上显着和可检测的影响,但这种影响很小,仅占该技术总变化的2-5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Test structure, circuits and extraction methods to determine the radius of infuence of STI and polysilicon pattern density
Advanced CMOS processes need new methodologies to extract, characterize and model process variations and their sources. Most prior studies have focused on understanding the effect of local layout features on transistor performance; limited work has been done to characterize medium-range (≈ 10μm to 2mm) pattern density effects. We propose a new methodology to extract the radius of influence, or the range of neighboring layout that should be taken into account in determining transistor characteristics, for shallow trench isolation (STI) and polysilicon pattern density. A test chip, with 130k devices under test (DUTs) and step-like pattern density layout changes, is designed in 65nm bulk CMOS technology as a case study. The extraction result of the measured data suggests that the local layout geometry, within the DUT cell size of 6μm × 8μm, is the dominant contributor to systematic device variation. Across-die medium-range layout pattern densities are found to have a statistically significant and detectable effect, but this effect is small and contributes only 2-5% of the total variation in this technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信