Yuhao Zhang, Chenghao Lyu, Haotian Xu, Yijing Xia, Fei Feng, Gurjeet Singh, Patrick Chiang, X. Wang
{"title":"通过融合多个不准确惯性测量单元传感器改进位置估计","authors":"Yuhao Zhang, Chenghao Lyu, Haotian Xu, Yijing Xia, Fei Feng, Gurjeet Singh, Patrick Chiang, X. Wang","doi":"10.1109/IEEE-IWS.2016.7585483","DOIUrl":null,"url":null,"abstract":"This paper presents improved position tracking and location estimation of dead reckoning, by combining the data from multiple inaccurate inertial sensors together using unscented Kalman filtering (UKF). Experimental test results using two 9-axis inertial measurement unit (IMU) sensors show that position estimation of each sensor achieves a 26 % decrease in max error (ME) and a 37% improvement in root-mean-square error (RMSE), when compared with a single independent sensor.","PeriodicalId":185971,"journal":{"name":"2016 IEEE MTT-S International Wireless Symposium (IWS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved position estimation by fusing multiple inaccurate inertial measurement unit sensors\",\"authors\":\"Yuhao Zhang, Chenghao Lyu, Haotian Xu, Yijing Xia, Fei Feng, Gurjeet Singh, Patrick Chiang, X. Wang\",\"doi\":\"10.1109/IEEE-IWS.2016.7585483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents improved position tracking and location estimation of dead reckoning, by combining the data from multiple inaccurate inertial sensors together using unscented Kalman filtering (UKF). Experimental test results using two 9-axis inertial measurement unit (IMU) sensors show that position estimation of each sensor achieves a 26 % decrease in max error (ME) and a 37% improvement in root-mean-square error (RMSE), when compared with a single independent sensor.\",\"PeriodicalId\":185971,\"journal\":{\"name\":\"2016 IEEE MTT-S International Wireless Symposium (IWS)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE MTT-S International Wireless Symposium (IWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEE-IWS.2016.7585483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE MTT-S International Wireless Symposium (IWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEE-IWS.2016.7585483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved position estimation by fusing multiple inaccurate inertial measurement unit sensors
This paper presents improved position tracking and location estimation of dead reckoning, by combining the data from multiple inaccurate inertial sensors together using unscented Kalman filtering (UKF). Experimental test results using two 9-axis inertial measurement unit (IMU) sensors show that position estimation of each sensor achieves a 26 % decrease in max error (ME) and a 37% improvement in root-mean-square error (RMSE), when compared with a single independent sensor.