稳健Naïve社交网络中的学习

ERN: Search Pub Date : 2021-02-23 DOI:10.2139/ssrn.3791413
Gideon Amir, Itai Arieli, Galit Ashkenazi-Golan, R. Peretz
{"title":"稳健Naïve社交网络中的学习","authors":"Gideon Amir, Itai Arieli, Galit Ashkenazi-Golan, R. Peretz","doi":"10.2139/ssrn.3791413","DOIUrl":null,"url":null,"abstract":"We study a model of opinion exchange in social networks where a state of the world is realized and every agent receives a zero-mean noisy signal of the realized state. It is known from Golub and Jackson that under DeGroot \\cite{degroot1974reaching} dynamics agents reach a consensus that is close to the state of the world when the network is large. The DeGroot dynamics, however, is highly non-robust and the presence of a single ``stubborn agent'' that does not adhere to the updating rule can sway the public consensus to any other value. We introduce a variant of DeGroot dynamics that we call 1/m-DeGroot. 1/m-DeGroot dynamics approximates standard DeGroot dynamics to the nearest rational number with m as its denominator and like the DeGroot dynamics it is Markovian and stationary. We show that in contrast to standard DeGroot dynamics, 1/m-DeGroot dynamics is highly robust both to the presence of stubborn agents and to certain types of misspecifications.","PeriodicalId":153208,"journal":{"name":"ERN: Search","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust Naïve Learning in Social Networks\",\"authors\":\"Gideon Amir, Itai Arieli, Galit Ashkenazi-Golan, R. Peretz\",\"doi\":\"10.2139/ssrn.3791413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a model of opinion exchange in social networks where a state of the world is realized and every agent receives a zero-mean noisy signal of the realized state. It is known from Golub and Jackson that under DeGroot \\\\cite{degroot1974reaching} dynamics agents reach a consensus that is close to the state of the world when the network is large. The DeGroot dynamics, however, is highly non-robust and the presence of a single ``stubborn agent'' that does not adhere to the updating rule can sway the public consensus to any other value. We introduce a variant of DeGroot dynamics that we call 1/m-DeGroot. 1/m-DeGroot dynamics approximates standard DeGroot dynamics to the nearest rational number with m as its denominator and like the DeGroot dynamics it is Markovian and stationary. We show that in contrast to standard DeGroot dynamics, 1/m-DeGroot dynamics is highly robust both to the presence of stubborn agents and to certain types of misspecifications.\",\"PeriodicalId\":153208,\"journal\":{\"name\":\"ERN: Search\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Search\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3791413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3791413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了一种社会网络中的意见交换模型,在这种模型中,世界的状态被实现,每个智能体接收到一个零均值的已实现状态的噪声信号。从Golub和Jackson得知,在DeGroot \cite{degroot1974reaching}下,动态代理达成的共识接近于网络较大时的世界状态。然而,DeGroot动态是高度非鲁棒性的,并且存在一个不遵守更新规则的“顽固代理”,可以影响公众对任何其他值的共识。我们引入了DeGroot动力学的一个变体,我们称之为1/m-DeGroot。1/m-DeGroot动力学将标准DeGroot动力学近似为最接近的有理数,以m为分母,与DeGroot动力学一样,它是马尔可夫的和平稳的。我们表明,与标准DeGroot动力学相比,1/m-DeGroot动力学对顽固因子的存在和某些类型的错误规范都具有高度鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Naïve Learning in Social Networks
We study a model of opinion exchange in social networks where a state of the world is realized and every agent receives a zero-mean noisy signal of the realized state. It is known from Golub and Jackson that under DeGroot \cite{degroot1974reaching} dynamics agents reach a consensus that is close to the state of the world when the network is large. The DeGroot dynamics, however, is highly non-robust and the presence of a single ``stubborn agent'' that does not adhere to the updating rule can sway the public consensus to any other value. We introduce a variant of DeGroot dynamics that we call 1/m-DeGroot. 1/m-DeGroot dynamics approximates standard DeGroot dynamics to the nearest rational number with m as its denominator and like the DeGroot dynamics it is Markovian and stationary. We show that in contrast to standard DeGroot dynamics, 1/m-DeGroot dynamics is highly robust both to the presence of stubborn agents and to certain types of misspecifications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信